
Software Engineering 

UNIT - I: 

OVERVIEW: Introduction: FAQ's about software engineering, Professional and ethical 

responsibility. Socio-Technical systems: Emergent system properties; Systems engineering; 

Organizations, people and computer systems; Legacy systems. 

 

Software Engineering Class Notes: Introduction 

I. Frequently Asked Questions (FAQs) about Software Engineering: 

 What is Software Engineering? 

 Software Engineering is a systematic, disciplined, and quantifiable approach to 

developing, testing, and maintaining software. 

 How is it Different from Programming? 

 Programming is the implementation of algorithms in a specific programming 

language, while software engineering involves the entire software development 

life cycle. 

 Why is Software Engineering Important? 

 Software engineering ensures the delivery of high-quality software that meets 

user requirements, is maintainable, and can evolve with changing needs. 

 What are the Key Phases in Software Development? 

 Requirements analysis, design, implementation, testing, deployment, and 

maintenance. 

II. Professional and Ethical Responsibility: 

 Code of Ethics: 

 Software engineers should adhere to a code of ethics that includes principles 

such as honesty, integrity, and respect for the rights of others. 

 Quality and Safety: 

 Software engineers have a responsibility to ensure the quality and safety of the 

software they develop. 

 Continuous Learning: 

 Emphasizes the importance of staying updated on advancements in technology 

and best practices. 

III. Socio-Technical Systems: 

 Emergent System Properties: 

 Properties that emerge from the interactions of system components. 



 Examples include performance, reliability, and security. 

 Systems Engineering: 

 An interdisciplinary approach to designing, implementing, and managing 

complex systems. 

 Encompasses both technical and non-technical aspects of a system. 

 Organizations, People, and Computer Systems: 

 Considers the human and organizational aspects of software development. 

 Emphasizes teamwork, communication, and understanding user needs. 

 Legacy Systems: 

 Older systems that may be critical to an organization. 

 Challenges include maintenance, integration with new systems, and the 

potential for obsolescence. 

IV. Key Concepts in Detail: 

 Requirements Analysis: 

 Involves gathering, analyzing, and documenting user requirements. 

 Critical for defining the scope and functionality of the software. 

 Design: 

 Architectural design defines the system's structure. 

 Detailed design focuses on individual components and modules. 

 Implementation: 

 Writing code and converting design specifications into executable software. 

 Testing: 

 Verifying that the software functions correctly and meets requirements. 

 Deployment: 

 Installing and making the software operational in the target environment. 

 Maintenance: 

 Making modifications to the software to correct errors, improve performance, 

or add new features. 

V. Software Development Life Cycle Models: 

 Waterfall Model: 

 Linear and sequential approach. 



 Each phase must be completed before moving to the next. 

 Iterative and Incremental Models: 

 Development is done in increments or iterations. 

 Allows for feedback and adjustments throughout the process. 

 Agile Methodologies: 

 Emphasizes flexibility, collaboration, and customer feedback. 

 Iterative development with a focus on delivering small, functional increments. 

VI. Challenges in Software Engineering: 

 Complexity: 

 Software systems are inherently complex, and managing this complexity is a 

major challenge. 

 Change Management: 

 Adapting to changing requirements, technologies, and user needs. 

 Risk Management: 

 Identifying and mitigating risks to project success. 

 

 


