
Software Engineering 

UNIT - I: 

OVERVIEW: Introduction: FAQ's about software engineering, Professional and ethical 

responsibility. Socio-Technical systems: Emergent system properties; Systems engineering; 

Organizations, people and computer systems; Legacy systems. 

 

Software Engineering Class Notes: Introduction 

I. Frequently Asked Questions (FAQs) about Software Engineering: 

 What is Software Engineering? 

 Software Engineering is a systematic, disciplined, and quantifiable approach to 

developing, testing, and maintaining software. 

 How is it Different from Programming? 

 Programming is the implementation of algorithms in a specific programming 

language, while software engineering involves the entire software development 

life cycle. 

 Why is Software Engineering Important? 

 Software engineering ensures the delivery of high-quality software that meets 

user requirements, is maintainable, and can evolve with changing needs. 

 What are the Key Phases in Software Development? 

 Requirements analysis, design, implementation, testing, deployment, and 

maintenance. 

II. Professional and Ethical Responsibility: 

 Code of Ethics: 

 Software engineers should adhere to a code of ethics that includes principles 

such as honesty, integrity, and respect for the rights of others. 

 Quality and Safety: 

 Software engineers have a responsibility to ensure the quality and safety of the 

software they develop. 

 Continuous Learning: 

 Emphasizes the importance of staying updated on advancements in technology 

and best practices. 

III. Socio-Technical Systems: 

 Emergent System Properties: 

 Properties that emerge from the interactions of system components. 



 Examples include performance, reliability, and security. 

 Systems Engineering: 

 An interdisciplinary approach to designing, implementing, and managing 

complex systems. 

 Encompasses both technical and non-technical aspects of a system. 

 Organizations, People, and Computer Systems: 

 Considers the human and organizational aspects of software development. 

 Emphasizes teamwork, communication, and understanding user needs. 

 Legacy Systems: 

 Older systems that may be critical to an organization. 

 Challenges include maintenance, integration with new systems, and the 

potential for obsolescence. 

IV. Key Concepts in Detail: 

 Requirements Analysis: 

 Involves gathering, analyzing, and documenting user requirements. 

 Critical for defining the scope and functionality of the software. 

 Design: 

 Architectural design defines the system's structure. 

 Detailed design focuses on individual components and modules. 

 Implementation: 

 Writing code and converting design specifications into executable software. 

 Testing: 

 Verifying that the software functions correctly and meets requirements. 

 Deployment: 

 Installing and making the software operational in the target environment. 

 Maintenance: 

 Making modifications to the software to correct errors, improve performance, 

or add new features. 

V. Software Development Life Cycle Models: 

 Waterfall Model: 

 Linear and sequential approach. 



 Each phase must be completed before moving to the next. 

 Iterative and Incremental Models: 

 Development is done in increments or iterations. 

 Allows for feedback and adjustments throughout the process. 

 Agile Methodologies: 

 Emphasizes flexibility, collaboration, and customer feedback. 

 Iterative development with a focus on delivering small, functional increments. 

VI. Challenges in Software Engineering: 

 Complexity: 

 Software systems are inherently complex, and managing this complexity is a 

major challenge. 

 Change Management: 

 Adapting to changing requirements, technologies, and user needs. 

 Risk Management: 

 Identifying and mitigating risks to project success. 

 

 


