
Software Engineering 

UNIT - II: 

CRITICAL SYSTEMS, SOFTWARE PROCESSES: Critical Systems: A simple safety- critical system; System 

dependability; Availability and reliability. Software Processes: Models, Process iteration, Process activities; The Rational 

Unified Process; Computer-Aided Software Engineering. 

REQUIREMENTS: Software Requirements: Functional and Non-functional requirements; User requirements; System 

requirements; Interface specification; The software requirements document. Requirements Engineering Processes: 

Feasibility studies; Requirements elicitation and analysis; Requirements validation; Requirements management. 

 

1. A Simple Safety-Critical System: 

 Definition: 

 A safety-critical system is one in which the failure of the system could result in harm to people, damage 

to the environment, or financial loss. 

 Characteristics: 

 Emphasis on reliability, fault tolerance, and fail-safe mechanisms. 

 Examples: Airplane control systems, medical devices. 

2. System Dependability: 

 Dependability Attributes: 

 Reliability: The ability of a system to perform its functions without failure. 

 Availability: The proportion of time the system is operational. 

 Safety: The system's ability to operate without causing harm. 

 Security: Protection against unauthorized access and harm. 

3. Availability and Reliability: 

 Availability: 

 The system should be available for use when required. 

 Calculated as the ratio of operational time to total time. 

 Reliability: 

 The probability that the system will perform without failure over a specified time. 

II. Software Processes: 

1. Models: 

 Definition: 

 A software process model is a representation of the process followed by a development team. 



 Waterfall Model: 

 Linear, sequential process. 

 Progresses through phases: requirements, design, implementation, testing, deployment, maintenance. 

 Iterative and Incremental Models: 

 Development is done in increments, with each increment building upon the previous one. 

 Allows for flexibility and feedback. 

2. Process Iteration: 

 Iterative Development: 

 Repeating development cycles. 

 Each iteration adds new features or improvements. 

 Benefits: 

 Early feedback, flexibility in accommodating changes. 

3. Process Activities: 

 Specification: 

 Defining the system requirements. 

 Design and Implementation: 

 Creating a blueprint and translating it into code. 

 Validation: 

 Ensuring the system meets specified requirements. 

 Evolution: 

 Making modifications to the system based on changing requirements or improvements. 

4. The Rational Unified Process (RUP): 

 Iterative Process: 

 Divided into phases: Inception, Elaboration, Construction, Transition. 

 Each phase has specific goals and activities. 

 Key Characteristics: 

 Emphasizes iterative development and continuous feedback. 

 Adaptable to various project sizes and types. 

5. Computer-Aided Software Engineering (CASE): 

 Definition: 



 The use of software tools to assist in the software development process. 

 Benefits: 

 Increased productivity, improved quality, and better management of the development process. 

 Examples: 

 Code editors, debuggers, version control systems. 

III. Challenges in Critical Systems and Software Processes: 

 Critical Systems Challenges: 

 Balancing safety, reliability, and functionality. 

 Rigorous testing and verification. 

 Software Processes Challenges: 

 Adapting to changing requirements. 

 Managing complexity in large projects. 

IV. Best Practices: 

 Documentation: 

 Thorough documentation is crucial for understanding, maintaining, and evolving critical systems. 

 Testing and Validation: 

 Rigorous testing and validation processes are essential for critical systems. 

 Continuous Improvement: 

 Adopting a mindset of continuous improvement in software processes to enhance efficiency and quality. 

 

 

REQUIREMENTS MODELING: SCENARIOS, 

INFORMATION, AND ANALYSIS CLASSES 

REQUIREMENTS ANALYSIS 
 

Requirements analysis results in the specification of software’s operational characteristics, 

indicates software’s interface with other system elements, and establishes constraints that software 

must meet. Requirements analysis allows you to elaborate on basic requirements established 

during the inception, elicitation, and negotiation tasks that are part of requirements engineering. 

The requirements modeling action results in one or more of the following types of models: 



• Scenario-based models of requirements from the point of view of various system 

“actors” 

• Data models that depict the information domain for the problem 

 Class-oriented models that represent object-oriented classes (attributes and operations) 

and the manner in which classes collaborate to achieve system requirements 

 Flow-oriented models that represent the functional elements of the system and how they 

transform data as it moves through the system 

 Behavioral models that depict how the software behaves as a consequence of external 

“events” 

These models provide a software designer with information that can be translated to architectural, 

interface, and component-level designs. Finally, the requirements model provides the developer 

and the customer with the means to assess quality once software is built. 

Throughout requirements modeling, primary focus is on what, not how. What user 

interaction occurs in a particular circumstance, what objects does the system manipulate, what 

functions must the system perform, what behaviors does the system exhibit, what interfaces are 

defined, and what constraints apply? 



 

Fig : The requirements model as a bridge between the system description and the design model 

 
The requirements model must achieve three primary objectives: 

(1) To describe what the customer requires, 

(2) to establish a basis for the creation of a software design, and 

(3) to define a set of requirements that can be validated once the software is built. 

The analysis model bridges the gap between a system-level description that describes overall 

system or business functionality as it is achieved by applying software, hardware, data, human, 

and other system elements and a software design that describes the software’s application 

architecture, user interface, and component-level structure. 

Analysis Rules of Thumb 

Arlow and Neustadt suggest a number of worthwhile rules of thumb that should be followed when 

creating the analysis model: 

• The model should focus on requirements that are visible within the problem or business 

domain. The level of abstraction should be relatively high. 

• Each element of the requirements model should add to an overall understanding of 

software requirements and provide insight into the information domain, function, and 

behavior of the system. 

• Delay consideration of infrastructure and other nonfunctional models until design. That 

is, a database may be required, but the classes necessary to implement it, the functions 

required to access it, and the behavior that will be exhibited as it is used should be 

considered only after problem domain analysis has been completed. 



• Minimize coupling throughout the system. It is important to represent relationships 

between classes and functions. However, if the level of “interconnectedness” is extremely 

high, effort should be made to reduce it. 

• Be certain that the requirements model provides value to all stakeholders. Each 

constituency has its own use for the model 

• Keep the model as simple as it can be. Don’t create additional diagrams when they add no 

new information. Don’t use complex notational forms, when a simple list will do. 

Domain Analysis 

Domain analysis doesn’t look at a specific application, but rather at the domain in which 

the application resides. 

The “specific application domain” can range from avionics to banking, from multimedia 

video games to software embedded within medical devices. The goal of domain analysis is 

straightforward: to identify common problem solving elements that are applicable to all 

applications within the domain, to find or create those analysis classes and/or analysis patterns 

that are broadly applicable so that they may be reused. 

Requirements Modeling Approaches 

One view of requirements modeling, called structured analysis, considers data and the 

processes that transform the data as separate entities. Data objects are modeled in a way that defines 

their attributes and relationships. 

A second approach to analysis modeling, called object-oriented analysis, focuses on the 

definition of classes and the manner in which they collaborate with one another to effect customer 

requirements. UML and the Unified Process are predominantly object oriented. 

Each element of the requirements model is represented in following figure presents the 

problem from a different point of view. 

Scenario-based elements depict how the user interacts with the system and the specific 

sequence of activities that occur as the software is used. 

Class-based elements model the objects that the system will manipulate, the operations 

that will be applied to the objects to effect the manipulation, relationships between the objects, and 

the collaborations that occur between the classes that are defined. 



 

 
 

Fig : Elements of the analysis model 

 
Behavioral elements depict how external events change the state of the system or the 

classes that reside within it. Finally, 

Flow-oriented elements represent the system as an information transform, depicting how 

data objects are transformed as they flow through various system functions. 

SCENARIO-BASED MODELING 
Scenario-based elements depict how the user interacts with the system and the specific 

sequence of activities that occur as the software is used. 

Creating a Preliminary Use Case 

Alistair Cockburn characterizes a use case as a “contract for behavior”, the “contract” 

defines the way in which an actor uses a computer-based system to accomplish some goal. In 

essence, a use case captures the interactions that occur between producers and consumers of 

information and the system itself. 

A use case describes a specific usage scenario in straightforward language from the point of view 

of a defined actor. These are the questions that must be answered if use cases are to provide value 

as a requirements modeling tool. (1) what to write about, (2) how much to write about it, 

(3) how detailed to make your description, and (4) how to organize the description? 

To begin developing a set of use cases, list the functions or activities performed by a 

specific actor. 

Refining a Preliminary Use Case 

Each step in the primary scenario is evaluated by asking the following questions: 



• Can the actor take some other action at this point? 

• Is it possible that the actor will encounter some error condition at this point? If so, what 

might it be? 

• Is it possible that the actor will encounter some other behavior at this point (e.g.,behavior 

that is invoked by some event outside the actor’s control)? If so, what might it be? 

Cockburn recommends using a “brainstorming” session to derive a reasonably complete set of 

exceptions for each use case. In addition to the three generic questions suggested earlier in this 

section, the following issues should also be explored: 

• Are there cases in which some “validation function” occurs during this use case? This 

implies that validation function is invoked and a potential error condition might occur. 

• Are there cases in which a supporting function (or actor) will fail to respond 

appropriately? For example, a user action awaits a response but the function that is to 

respond times out. 

• Can poor system performance result in unexpected or improper user actions? For example, 

a Web-based interface responds too slowly, resulting in a user making multiple selects on 

a processing button. These selects queue inappropriately and ultimately generate an error 

condition. 

Writing a Formal Use Case 

The typical outline for formal use cases can be in following manner 

• The goal in context identifies the overall scope of the use case. 

• The precondition describes what is known to be true before the use case is initiated. 

• The trigger identifies the event or condition that “gets the use case started” 

• The scenario lists the specific actions that are required by the actor and the appropriate 

system responses. 

• Exceptions identify the situations uncovered as the preliminary use case is refined 

Additional headings may or may not be included and are reasonably self-explanatory. 

Every modeling notation has limitations, and the use case is no exception. A use case focuses on 

functional and behavioral requirements and is generally inappropriate for nonfunctional 

requirements 



However, scenario-based modeling is appropriate for a significant majority of all situations that 

you will encounter as a software engineer. 

Fig : Simple Use Case Diagram 

 
 

UML MODELS THAT SUPPLEMENT THE USE CASE 

Developing an Activity Diagram 

The UML activity diagram supplements the use case by providing a graphical representation of 

the flow of interaction within a specific scenario. Similar to the flowchart, an activity diagram uses 

rounded rectangles to imply a specific system function, arrows to represent flow through the 

system, decision diamonds to depict a branching decision (each arrow emanating from the 

diamond is labeled), and solid horizontal lines to indicate that parallel activities are occurring. i.e 

A UML activity diagram represents the actions and decisions that occur as some function is 

performed. 



 
 
 

Fig : Activity Diagram for ATM 

Swimlane Diagrams 

The UML swimlane diagram is a useful variation of the activity diagram and allows you 

to represent the flow of activities described by the use case and at the same time indicate which 

actor or analysis class has responsibility for the action described by an activity rectangle. 

Responsibilities are represented as parallel segments that divide the diagram vertically, like the 

lanes in a swimming pool. 

The following figure represents swimlane diagram for ATM 



 

Fig : swimlane diagram for ATM 



 DATA MODELING CONCEPTS 
Data modeling is the process of documenting a complex software system design as an 

easily understood diagram, using text and symbols to represent the way data needs to flow. The 

diagram can be used as a blueprint for the construction of new software or for re-engineering a 

legacy application. The most widely used data Model by the Software engineers is Entity- 

Relationship Diagram (ERD), it addresses the issues and represents all data objects that are 

entered, stored, transformed, and produced within an application. 

Data Objects 

A data object is a representation of composite information that must be understood by 

software. A data object can be an external entity (e.g., anything that produces or consumes 

information), a thing (e.g., a report or a display), an occurrence (e.g., a telephone call) or event 

(e.g., an alarm), a role (e.g., salesperson), an organizational unit (e.g., accounting department), 

a place (e.g., a warehouse), or a structure (e.g., a file). 

For example, a person or a car can be viewed as a data object in the sense that either can 

be defined in terms of a set of attributes. The description of the data object incorporates the data 

object and all of its attributes. 

A data object encapsulates data only—there is no reference within a data object to 

operations that act on the data. Therefore, the data object can be represented as a table as shown 

in following table. The headings in the table reflect attributes of the object. 

 

Fig : Tabular representation of data objects 

http://searchdatamanagement.techtarget.com/definition/data


Data Attributes 

Data attributes define the properties of a data object and take on one of three different 

characteristics. They can be used to (1) name an instance of the data object, (2) describe the 

instance, or (3) make reference to another instance in another table. 

 
Relationships 

Data objects are connected to one another in different ways. Consider the two data objects, person 

and car. These objects can be represented using the following simple notation and relationships 

are 1) A person owns a car, 2) A person is insured to drive a car 

 

 

Fig : Relationships between data objects 

 

CLASS-BASED MODELING 
 

Class-based modeling represents the objects that the system will manipulate, the operations 

that will be applied to the objects to effect the manipulation, relationships between the objects, and 

the collaborations that occur between the classes that are defined. The elements of a class-based 

model include classes and objects, attributes, operations, class responsibility- collaborator (CRC) 

models, collaboration diagrams, and packages. 

Identifying Analysis Classes 

We can begin to identify classes by examining the usage scenarios developed as part of the 

requirements model and performing a “grammatical parse” on the use cases developed for the 

system to be built. 



Analysis classes manifest themselves in one of the following ways: 

• External entities (e.g., other systems, devices, people) that produce or consume 

information to be used by a computer-based system. 

• Things (e.g., reports, displays, letters, signals) that are part of the information domain for 

the problem. 

• Occurrences or events (e.g., a property transfer or the completion of a series of robot 

movements) that occur within the context of system operation. 

• Roles (e.g., manager, engineer, salesperson) played by people who interact with the 

system. 

• Organizational units (e.g., division, group, team) that are relevant to an application. 

• Places (e.g., manufacturing floor or loading dock) that establish the context of the 

problem and the overall function of the system. 

• Structures (e.g., sensors, four-wheeled vehicles, or computers) that define a class of 

objects or related classes of objects. 

Coad and Yourdon suggest six selection characteristics that should be used as you consider each 

potential class for inclusion in the analysis model: 

1. Retained information. The potential class will be useful during analysis only if information 

about it must be remembered so that the system can function. 

2. Needed services. The potential class must have a set of identifiable operations that can change 

the value of its attributes in some way. 

3. Multiple attributes. During requirement analysis, the focus should be on “major” information; 

a class with a single attribute may, in fact, be useful during design, but is probably better 

represented as an attribute of another class during the analysis activity. 

4. Common attributes. A set of attributes can be defined for the potential class and these attributes 

apply to all instances of the class. 

5. Common operations. A set of operations can be defined for the potential class and these 

operations apply to all instances of the class. 

6. Essential requirements. External entities that appear in the problem space and produce or 

consume information essential to the operation of any solution for the system will almost always 

be defined as classes in the requirements model. 



.2 Specifying Attributes 

Attributes describe a class that has been selected for inclusion in the requirements model. 

In essence, it is the attributes that define the class—that clarify what is meant by the class in the 

context of the problem space. 

To develop a meaningful set of attributes for an analysis class, you should study each use 

case and select those “things” that reasonably “belong” to the class. 

Defining Operations 

Operations define the behavior of an object. Although many different types of operations exist, 

they can generally be divided into four broad categories: (1) operations that manipulate data in 

some way (e.g., adding, deleting, reformatting, selecting), (2) operations that perform a 

computation, (3) operations that inquire about the state of an object, and (4) operations that monitor 

an object for the occurrence of a controlling event. 

 
Fig : Class diagram for the system class 

 
 

Class-Responsibility-Collaborator (CRC) Modeling 

Class-responsibility-collaborator (CRC) modeling provides a simple means for identifying 

and organizing the classes that are relevant to system or product requirements. 



Ambler describes CRC modeling in the following way : 

A CRC model is really a collection of standard index cards that represent classes. The 

cards are divided into three sections. Along the top of the card you write the name of the class. 

In the body of the card you list the class responsibilities on the left and the collaborators on the 

right. 

The CRC model may make use of actual or virtual index cards. The intent is to develop an 

organized representation of classes. Responsibilities are the attributes and operations that are 

relevant for the class. i.e., a responsibility is “anything the class knows or does” Collaborators are 

those classes that are required to provide a class with the information needed to complete a 

responsibility. In general, a collaboration implies either a request for information or a request for 

some action. A simple CRC index card is illustrated in following figure. 

 

Fig : A CRC model index card 

Classes : The taxonomy of class types can be extended by considering the following categories: 

• Entity classes, also called model or business classes, are extracted directly from the 

statement of the problem. These classes typically represent things that are to be stored in 

a database and persist throughout the duration of the application. 



• Boundary classes are used to create the interface that the user sees and interacts with as 

the software is used. Boundary classes are designed with the responsibility of managing 

the way entity objects are represented to users. 

• Controller classes manage a “unit of work” from start to finish. That is, controller classes 

can be designed to manage (1) the creation or update of entity objects, (2) the instantiation 

of boundary objects as they obtain information from entity objects, (3) complex 

communication between sets of objects, (4) validation of data communicated between 

objects or between the user and the application. In general, controller classes are not 

considered until the design activity has begun. 

Responsibilities : Wirfs-Brock and her colleagues suggest five guidelines for allocating 

responsibilities to classes: 

1. System intelligence should be distributed across classes to best address the needs of 

the problem. Every application encompasses a certain degree of intelligence; that is, what 

the system knows and what it can do. 

2. Each responsibility should be stated as generally as possible. This guideline implies 

that general responsibilities should reside high in the class hierarchy 

3. Information and the behavior related to it should reside within the same class. This 

achieves the object-oriented principle called encapsulation. Data and the processes that 

manipulate the data should be packaged as a cohesive unit. 

4. Information about one thing should be localized with a single class, not distributed 

across multiple classes. A single class should take on the responsibility for storing and 

manipulating a specific type of information. This responsibility should not, in general, be 

shared across a number of classes. If information is distributed, software becomes more 

difficult to maintain and more challenging to test. 

5. Responsibilities should be shared among related classes, when appropriate. There are 

many cases in which a variety of related objects must all exhibit the same behavior at the same 

time. 

Collaborations. Classes fulfill their responsibilities in one of two ways: 

1. A class can use its own operations to manipulate its own attributes, thereby fulfilling a 

particular responsibility, or 

2. A class can collaborate with other classes. 



When a complete CRC model has been developed, stakeholders can review the model using 

the following approach : 

1. All participants in the review (of the CRC model) are given a subset of the CRC model 

index cards. Cards that collaborate should be separated (i.e., no reviewer should have two 

cards that collaborate). 

2. All use-case scenarios (and corresponding use-case diagrams) should be organized into 

categories. 

3. The review leader reads the use case deliberately. As the review leader comes to a named 

object, she passes a token to the person holding the corresponding class index card. 

4. When the token is passed, the holder of the card is asked to describe the responsibilities 

noted on the card. The group determines whether one (or more) of the responsibilities 

satisfies the use-case requirement. 

5. If the responsibilities and collaborations noted on the index cards cannot accommodate the 

use case, modifications are made to the cards. This may include the definition of new 

classes (and corresponding CRC index cards) or the specification of new or revised 

responsibilities or collaborations on existing cards. 

Associations and Dependencies 

An association defines a relationship between classes. An association may be further defined 

by indicating multiplicity. Multiplicity defines how many of one class are related to how many 

of another class. 

A client-server relationship exists between two analysis classes. In such cases, a client class 

depends on the server class in some way and a dependency relationship is established. 

Dependencies are defined by a stereotype. A stereotype is an “extensibility mechanism” within 

UML that allows you to define a special modeling element whose semantics are custom defined. 

In UML. Stereotypes are represented in double angle brackets (e.g., <<stereotype>>). 



 
 

Fig : Multiplicity 
 

 
 

 

 

Fig : Dependencies 

Analysis Packages 

An important part of analysis modeling is categorization. That is, various 

elements of the analysis model (e.g., use cases, analysis classes) are categorized 

in a manner that packages them as a grouping—called an analysis package—that 

is given a representative name. 

 
Fig : Packages 

 

 

 


	REQUIREMENTS MODELING: SCENARIOS, INFORMATION, AND ANALYSIS CLASSES
	Analysis Rules of Thumb
	• The model should focus on requirements that are visible within the problem or business domain. The level of abstraction should be relatively high.

	Domain Analysis
	Requirements Modeling Approaches
	Fig : Elements of the analysis model

	SCENARIO-BASED MODELING
	Creating a Preliminary Use Case
	Refining a Preliminary Use Case
	Writing a Formal Use Case
	Developing an Activity Diagram
	Fig : Activity Diagram for ATM
	DATA MODELING CONCEPTS
	Data Objects
	Fig : Tabular representation of data objects
	Relationships

	CLASS-BASED MODELING
	Identifying Analysis Classes
	.2 Specifying Attributes
	Defining Operations
	Fig : Class diagram for the system class
	Fig : A CRC model index card
	Associations and Dependencies
	Fig : Multiplicity
	Analysis Packages



