
Software engineering

UNIT - IV:

SOFTWARE DESIGN: Architectural Design: Architectural design decisions; System organization; Modular

decomposition styles; Control styles. Object-Oriented design: Objects and Object Classes; An Object-Oriented design

process; Design evolution.

DEVELOPMENT: Rapid Software Development: Agile methods; Extreme programming; Rapid application

development. Software Evolution: Program evolution dynamics; Software maintenance; Evolution processes; Legacy

system evolution.

Design Concepts

Introduction: Software design encompasses the set of principles, concepts, and practices that lead

to the development of a high-quality system or product. Design principles establish an overriding

philosophy that guides you in the design work you must perform. Design is pivotal to successful

software engineering

The goal of design is to produce a model or representation that exhibits firmness,

commodity, and delight Software design changes continually as new methods, better analysis, and

broader understanding evolve

DESIGN WITHIN THE CONTEXT OF SOFTWARE ENGINEERING

Software design sits at the technical kernel of software engineering and is applied

regardless of the software process model that is used. Beginning once software requirements have

been analyzed and modeled, software design is the last software engineering action within the

modeling activity and sets the stage for construction (code generation and testing).

Each of the elements of the requirements model provides information that is necessary to

create the four design models required for a complete specification of design. The flow of

information during software design is illustrated in following figure.

The requirements model, manifested by scenario-based, class-based, flow-oriented, and

behavioral elements, feed the design task.

The data/class design transforms class models into design class realizations and the

requisite data structures required to implement the software.

The architectural design defines the relationship between major structural elements of the

software, the architectural styles and design patterns that can be used to achieve the requirements

defined for the system, and the constraints that affect the way in which architecture can be

implemented. The architectural design representation—the framework of a computer- based

system—is derived from the requirements model.

Fig : Translating the requirements model into the design model

The interface design describes how the software communicates with systems that

interoperate with it, and with humans who use it. An interface implies a flow of information (e.g.,

data and/or control) and a specific type of behavior. Therefore, usage scenarios and behavioral

models provide much of the information required for interface design.

The component-level design transforms structural elements of the software architecture

into a procedural description of software components. Information obtained from the class-based

models, flow models, and behavioral models serve as the basis for component design.

The importance of software design can be stated with a single word—quality. Design is

the place where quality is fostered in software engineering. Design provides you with

representations of software that can be assessed for quality. Design is the only way that you can

accurately translate stakeholder’s requirements into a finished software product or system.

Software design serves as the foundation for all the software engineering and software support

activities that follow.

THE DESIGN PROCESS

Software design is an iterative process through which requirements are translated into a

“blueprint” for constructing the software. Initially, the blueprint depicts a holistic view of

software. That is, the design is represented at a high level of abstraction

Software Quality Guidelines and Attributes

McGlaughlin suggests three characteristics that serve as a guide for the evaluation of a good

design:

• The design must implement all of the explicit requirements contained in the requirements

model, and it must accommodate all of the implicit requirements desired by stakeholders.

• The design must be a readable, understandable guide for those who generate code and for

those who test and subsequently support the software.

• The design should provide a complete picture of the software, addressing the data,

functional, and behavioral domains from an implementation perspective.

Quality Guidelines. In order to evaluate the quality of a design representation, consider the

following guidelines:

1. A design should exhibit an architecture that (1) has been created using recognizable

architectural styles or patterns, (2) is composed of components that exhibit good design

characteristics and (3) can be implemented in an evolutionary fashion,2 thereby facilitating

implementation and testing.

2. A design should be modular; that is, the software should be logically partitioned into

elements or subsystems.

3. A design should contain distinct representations of data, architecture, interfaces, and

components.

4. A design should lead to data structures that are appropriate for the classes to be

implemented and are drawn from recognizable data patterns.

5. A design should lead to components that exhibit independent functional characteristics.

6. A design should lead to interfaces that reduce the complexity of connections between

components and with the external environment.

7. A design should be derived using a repeatable method that is driven by information

obtained during software requirements analysis.

8. A design should be represented using a notation that effectively communicates its meaning.

Quality Attributes. Hewlett-Packard developed a set of software quality attributes that has been

given the acronym FURPS—functionality, usability, reliability, performance, and

supportability. The FURPS quality attributes represent a target for all software design:

• Functionality is assessed by evaluating the feature set and capabilities of the program, the

generality of the functions that are delivered, and the security of the overall system..

• Usability is assessed by considering human factors, overall aesthetics, consistency, and

documentation.

• Reliability is evaluated by measuring the frequency and severity of failure, the accuracy of

output results, the mean-time-to-failure (MTTF), the ability to recover from failure, and

the predictability of the program.

• Performance is measured by considering processing speed, response time, resource

consumption, throughput, and efficiency.

• Supportability combines the ability to extend the program (extensibility), adaptability,

serviceability—these three attributes represent a more common term, maintainability—

and in addition, testability, compatibility, configurability, the ease with which a system can

be installed, and the ease with which problems can be localized.

The Evolution of Software Design

The evolution of software design is a continuing process that has now spanned almost six

decades. Early design work concentrated on criteria for the development of modular programs and

methods for refining software structures in a top down manner. Procedural aspects of design

definition evolved into a philosophy called structured programming.

A number of design methods, growing out of the work just noted, are being applied

throughout the industry. All of these methods have a number of common characteristics: (1) a

mechanism for the translation of the requirements model into a design representation, (2) a notation

for representing functional components and their interfaces, (3) heuristics for refinement and

partitioning, and (4) guidelines for quality assessment.

DESIGN CONCEPTS

A set of fundamental software design concepts has evolved over the history of software

engineering. Each provides the software designer with a foundation from which more

sophisticated design methods can be applied. Each helps you answer the following questions:

• What criteria can be used to partition software into individual components?

• How is function or data structure detail separated from a conceptual representation of

the software?

• What uniform criteria define the technical quality of a software design?

The following brief overview of important software design concepts that span both traditional

and object-oriented software development.

Abstraction

Abstraction is the act of representing essential features without including the background

details or explanations. the abstraction is used to reduce complexity and allow efficient design and

implementation of complex software systems. Many levels of abstraction can be posed. At the

highest level of abstraction, a solution is stated in broad terms using the language of the problem

environment. At lower levels of abstraction, a more detailed description of the solution is provided.

As different levels of abstraction are developed, you work to create both procedural and

data abstractions.

A procedural abstraction refers to a sequence of instructions that have a specific and

limited function. The name of a procedural abstraction implies these functions, but specific details

are suppressed.

A data abstraction is a named collection of data that describes a data object.

Architecture

Software architecture alludes to “the overall structure of the software and the ways in

which that structure provides conceptual integrity for a system” Architecture is the structure or

organization of program components (modules), the manner in which these components interact,

and the structure of data that are used by the components.

Shaw and Garlan describe a set of properties that should be specified as part of an architectural

design:

 Structural properties. This aspect of the architectural design representation defines the

components of a system (e.g., modules, objects, filters) and the manner in which those

components are packaged and interact with one another.

 Extra-functional properties. The architectural design description should address how the

design architecture achieves requirements for performance, capacity, reliability, security,

adaptability, and other system characteristics.

 Families of related systems. The architectural design should draw upon repeatable

patterns that are commonly encountered in the design of families of similar systems. In

essence, the design should have the ability to reuse architectural building blocks.

The architectural design can be represented using one or more of a number of different models.

Structural models: Represent architecture as an organized collection of program components.

Framework models: Increase the level of design abstraction by attempting to identify repeatable

architectural design frameworks that are encountered in similar types of applications.

Dynamic models : Address the behavioral aspects of the program architecture, indicating how

the structure or system configuration may change as a function of external events.

Process models :Focus on the design of the business or technical process that the system must

accommodate.

Functional models can be used to represent the functional hierarchy of a system.

A number of different architectural description languages (ADLs) have been developed

to represent these models.

Patterns

Brad Appleton defines a design pattern in the following manner: “A pattern is a named

nugget of insight which conveys the essence of a proven solution to a recurring problem within a

certain context amidst competing concerns”

A design pattern describes a design structure that solves a particular design problem within

a specific context and amid “forces” that may have an impact on the manner in which the pattern

is applied and used.

The intent of each design pattern is to provide a description that enables a designer to

determine (1) whether the pattern is applicable to the current work, (2) whether the pattern can be

reused (hence, saving design time), and (3) whether the pattern can serve as a guide for developing

a similar, but functionally or structurally different pattern.

Separation of Concerns

Separation of concerns is a design concept that suggests that any complex problem can be

more easily handled if it is subdivided into pieces that can each be solved and/or optimized

independently. A concern is a feature or behavior that is specified as part of the requirements

model for the software.

Separation of concerns is manifested in other related design concepts: modularity, aspects,

functional independence, and refinement. Each will be discussed in the subsections that follow.

8.3.5 Modularity

Modularity is the most common manifestation of separation of concerns. Software is

divided into separately named and addressable components, sometimes called module.

Modularity is the single attribute of software that allows a program to be intellectually

manageable

Fig : Modularity and software cost

Information Hiding

The principle of information hiding suggests that modules be “characterized by design decisions

that hides from all others.” In other words, modules should be specified and designed so that

information contained within a module is inaccessible to other modules that have no need for such

information.

The use of information hiding as a design criterion for modular systems provides the

greatest benefits when modifications are required during testing and later during software

maintenance. Because most data and procedural detail are hidden from other parts of the software,

inadvertent errors introduced during modification are less likely to propagate to other locations

within the software.

Functional Independence

The concept of functional independence is a direct outgrowth of separation of concerns,

modularity, and the concepts of abstraction and information hiding. Functional independence is

achieved by developing modules with “single minded” function and an “aversion” to excessive

interaction with other modules.

Independence is assessed using two qualitative criteria: cohesion and coupling.

Cohesion is an indication of the relative functional strength of a module. Coupling is an

indication of the relative interdependence among modules.

Cohesion is a natural extension of the information-hiding concept. A cohesive module

performs a single task, requiring little interaction with other components in other parts of a

program. Stated simply, a cohesive module should do just one thing. Although you should always

strive for high cohesion (i.e., single-mindedness).

Coupling is an indication of interconnection among modules in a software structure.

Coupling depends on the interface complexity between modules, the point at which entry or

reference is made to a module, and what data pass across the interface. In software design, you

should strive for the lowest possible coupling.

Refinement

Stepwise refinement is a top-down design strategy originally proposed by Niklaus Wirth.

Refinement is actually a process of elaboration. You begin with a statement of function that is

defined at a high level of abstraction.

Abstraction and refinement are complementary concepts. Abstraction enables you to

specify procedure and data internally but suppress the need for “outsiders” to have knowledge of

low-level details. Refinement helps you to reveal low-level details as design progresses.

Aspects

An aspect is a representation of a crosscutting concern. A crosscutting concern is some

characteristic of the system that applies across many different requirements.

Refactoring

An important design activity suggested for many agile methods, refactoring is a reorganization

technique that simplifies the design (or code) of a component without changing its function or

behavior. Fowler defines refactoring in the following manner: “Refactoring is the process of

changing a software system in such a way that it does not alter the external behavior of the

code [design] yet improves its internal structure.”

Object-Oriented Design Concepts

The object-oriented (OO) paradigm is widely used in modern software engineering. OO

design concepts such as classes and objects, inheritance, messages, and polymorphism, among

others.

Design Classes

The requirements model defines a set of analysis classes. Each describes some element of the

problem domain, focusing on aspects of the problem that are user visible. A set of design classes

that refine the analysis classes by providing design detail that will enable the classes to be

implemented, and implement a software infrastructure that supports the business solution.

Five different types of design classes, each representing a different layer of the design

architecture, can be developed:

• User interface classes define all abstractions that are necessary for human computer

interaction (HCI). The design classes for the interface may be visual representations of the

elements of the metaphor.

• Business domain classes are often refinements of the analysis classes defined earlier. The

classes identify the attributes and services (methods) that are required to implement some

element of the business domain.

• Process classes implement lower-level business abstractions required to fully manage the

business domain classes.

• Persistent classes represent data stores (e.g., a database) that will persist beyond the

execution of the software.

• System classes implement software management and control functions that enable the

system to operate and communicate within its computing environment and with the outside

world.

Arlow and Neustadt suggest that each design class be reviewed to ensure that it is “well-

formed.” They define four characteristics of a well-formed design class:

 Complete and sufficient. A design class should be the complete encapsulation of all

attributes and methods that can reasonably be expected to exist for the class. Sufficiency

ensures that the design class contains only those methods that are sufficient to achieve the

intent of the class, no more and no less.

 Primitiveness. Methods associated with a design class should be focused on

accomplishing one service for the class. Once the service has been implemented with a

method, the class should not provide another way to accomplish the same thing.

 High cohesion. A cohesive design class has a small, focused set of responsibilities and

single-mindedly applies attributes and methods to implement those responsibilities.

 Low coupling. Within the design model, it is necessary for design classes to collaborate

with one another. If a design model is highly coupled, the system is difficult to implement,

to test, and to maintain over time.

THE DESIGN MODEL

The design model can be viewed in two different dimensions. The process dimension

indicates the evolution of the design model as design tasks are executed as part of the software

process. The abstraction dimension represents the level of detail as each element of the analysis

model is transformed into a design equivalent and then refined iteratively. The design model has

four major elements: data, architecture, components, and interface.

3.4.1. Data Design Elements

Data design (sometimes referred to as data architecting) creates a model of data and/or

information that is represented at a high level of abstraction (the customer/user’s view of data).

This data model is then refined into progressively more implementation-specific representations

that can be processed by the computer-based system. The structure of data has always been an

important part of software design. At the program component level, the design of data structures

and the associated algorithms required to manipulate them is essential to the creation of high-

quality applications. At the application level, the translation of a data model into a database is

pivotal to achieving the business objectives of a system. At the business level, the collection of

information stored in disparate databases and reorganized into a “data warehouse” enables data

mining or knowledge discovery that can have an impact on the success of the business itself.

Fig : Dimensions of the design model

3.4.2 Architectural Design Elements

The architectural design for software is the equivalent to the floor plan of a house. The

floor plan depicts the overall layout of the rooms; their size, shape, and relationship to one another;

and the doors and windows that allow movement into and out of the rooms. Architectural design

elements give us an overall view of the software.

The architectural model is derived from three sources: (1) information about the

application domain for the software to be built; (2) specific requirements model elements such as

data flow diagrams or analysis classes, their relationships and collaborations for the problem at

hand; and (3) the availability of architectural styles and patterns.

The architectural design element is usually depicted as a set of interconnected subsystems,

often derived from analysis packages within the requirements model.

3.4.3. Interface Design Elements

The interface design for software is analogous to a set of detailed drawings for the doors,

windows, and external utilities of a house.

There are three important elements of interface design: (1) the user interface (UI); (2) external

interfaces to other systems, devices, networks, or other producers or consumers of information;

and (3) internal interfaces between various design components.

These interface design elements allow the software to communicate externally and enable

internal communication and collaboration among the components that populate the software

architecture.

Component-Level Design Elements

The component-level design for software is the equivalent to a set of detailed drawings for

each room in a house. These drawings depict wiring and plumbing within each room, the location

of electrical receptacles and wall switches, sinks, showers, tubs, drains, cabinets, and closets.

The component-level design for software fully describes the internal detail of each software

component. To accomplish this, the component-level design defines data structures for all local

data objects and algorithmic detail for all processing that occurs within a component and an

interface that allows access to all component operations.

Deployment-Level Design Elements

Deployment-level design elements indicate how software functionality and subsystems

will be allocated within the physical computing environment that will support the software.

Deployment diagrams begin in descriptor form, where the deployment environment is described

in general terms. Later, instance form is used and elements of the configuration are explicitly

described.

Architectural Design

SOFTWARE ARCHITECTURE
Architecture serves as a blueprint for a system. It provides an abstraction to manage the

system complexity and establish a communication and coordination mechanism among

components. It defines a structured solution to meet all the technical and operational

requirements, while optimizing the common quality attributes like performance and security.

What Is Architecture?

Bass, Clements, and Kazman define this elusive term in the following way:

“The software architecture of a program or computing system is the structure or

structures of the system, which comprise software components, the externally visible

properties of those components, and the relationships among them.”

The architecture is not the operational software. Rather, it is a representation that enables you to

(1) analyze the effectiveness of the design in meeting its stated requirements,

(2) consider architectural alternatives at a stage when making design changes is still

relatively easy, and

(3) reduce the risks associated with the construction of the software.

Why Is Architecture Important?

Bass and his colleagues identify three key reasons that software architecture is important:

• Representations of software architecture are an enabler for communication between all

parties (stakeholders) interested in the development of a computer-based system.

• The architecture highlights early design decisions that will have a profound impact on all

software engineering work that follows and, as important, on the ultimate success of the

system as an operational entity.

• Architecture “constitutes a relatively small, intellectually graspable model of how the

system is structured and how its components work together” The architectural design

model and the architectural patterns contained within it are transferable.

Architectural Descriptions

An architectural description of a software-based system must exhibit characteristics that

are analogous to those noted for the office building.

The IEEE Computer Society has proposed, Recommended Practice for Architectural

Description of Software-Intensive Systems, with the following objectives:

(1) to establish a conceptual framework and vocabulary for use during the design of

software architecture,

(2) to provide detailed guidelines for representing an architectural description, and

(3) to encourage sound architectural design practices.

The IEEE standard defines an architectural description (AD) as “a collection of products to

document an architecture.” The description itself is represented using multiple views, where each

view is “a representation of a whole system from the perspective of a related set of concerns.”

Architectural Decisions

Each view developed as part of an architectural description addresses a specific stakeholder

concern. To develop each view (and the architectural description as a whole) the system architect

considers a variety of alternatives and ultimately decides on the specific architectural features that

best meet the concern. Therefore, architectural decisions themselves can be considered to be one

view of the architecture. The reasons that decisions were made provide insight into the structure

of a system and its conformance to stakeholder concerns.

ARCHITECTURAL GENRES
The architectural genre will often dictate the specific architectural approach to the structure

that must be built. In the context of architectural design, genre implies a specific category within

the overall software domain. Within each category, you encounter a number of subcategories.

Grady Booch suggests the following architectural genres for software-based systems:

• Artificial intelligence—Systems that simulate or augment human cognition, locomotion,

or other organic processes.

• Commercial and nonprofit—Systems that are fundamental to the operation of a business

enterprise.

• Communications—Systems that provide the infrastructure for transferring and managing

data, for connecting users of that data, or for presenting data at the edge of an infrastructure.

• Content authoring—Systems that are used to create or manipulate textual or multimedia

artifacts. • Devices—Systems that interact with the physical world to provide some point

service for an individual.

• Entertainment and sports—Systems that manage public events or that provide a large

group entertainment experience.

• Financial—Systems that provide the infrastructure for transferring and managing

money and other securities.

• Games—Systems that provide an entertainment experience for individuals or groups.

• Government—Systems that support the conduct and operations of a local, state,

federal, global, or other political entity.

• Industrial—Systems that simulate or control physical processes.

• Legal—Systems that support the legal industry.

• Medical—Systems that diagnose or heal or that contribute to medical research.

• Military—Systems for consultation, communications, command, control, and

intelligence as well as offensive and defensive weapons.

• Operating systems—Systems that sit just above hardware to provide basic software

services.

• Platforms—Systems that sit just above operating systems to provide advanced services.

• Scientific—Systems that are used for scientific research and applications.

• Tools—Systems that are used to develop other systems.

• Transportation—Systems that control water, ground, air, or space vehicles.

• Utilities—Systems that interact with other software to provide some point service.

ARCHITECTURAL STYLES
An architectural style as a descriptive mechanism to differentiate the house from other

styles. The software that is built for computer-based systems also exhibits one of many

architectural styles. Each style describes a system category that encompasses (1) a set of

components (e.g., a database, computational modules) that perform a function required by a

system; (2) a set of connectors that enable “communication, coordination and cooperation” among

components; (3) constraints that define how components can be integrated to form the system; and

(4) semantic models that enable a designer to understand the overall properties of a system by

analyzing the known properties of its constituent parts.

An architectural style is a transformation that is imposed on the design of an entire

system. The intent is to establish a structure for all components of the system.

A Brief Taxonomy of Architectural Styles

Data-centered architectures. A data store (e.g., a file or database) resides at the center of this

architecture and is accessed frequently by other components that update, add, delete, or otherwise

modify data within the store. The following figure illustrates a typical data-centered style. Client

software accesses a central repository. In some cases the data repository is passive. Data-centered

architectures promote integrability.

Fig : Data-centered architecture

Data-flow architectures. This architecture is applied when input data are to be transformed

through a series of computational or manipulative components into output data. A pipe-and-filter

pattern shown in following figure. It has a set of components, called filters, connected by pipes

that transmit data from one component to the next. Each filter works independently of those

components upstream and downstream, is designed to expect data input of a certain form, and

produces data output of a specified form. However, the filter does not require knowledge of the

Workings of its neighboring filters.

Fig : Data-flow architecture

Call and return architectures. This architectural style enables you to achieve a program structure

that is relatively easy to modify and scale. A number of sub styles exist within this category:

• Main program/subprogram architectures. This classic program structure decomposes

function into a control hierarchy where a “main” program invokes a number of program

components that in turn may invoke still other components. The following figure illustrates

an architecture of this type.

• Remote procedure call architectures. The components of a main program/subprogram

architecture are distributed across multiple computers on a network.

Fig : Main program/subprogram architecture

Object-oriented architectures. The components of a system encapsulate data and the operations

that must be applied to manipulate the data. Communication and coordination between

components are accomplished via message passing.

Layered architectures. The basic structure of a layered architecture is illustrated in following

figure. A number of different layers are defined, each accomplishing operations that progressively

become closer to the machine instruction set. At the outer layer, components service user interface

operations. At the inner layer, components perform operating system interfacing. Intermediate

layers provide utility services and application software functions.

Fig : Layered architecture

Architectural Patterns

Architectural patterns address an application-specific problem within a specific context

and under a set of limitations and constraints. The pattern proposes an architectural solution that

can serve as the basis for architectural design.

Organization and Refinement

The following questions provide insight into an architectural style:

Control. How is control managed within the architecture? Does a distinct control hierarchy exist,

and if so, what is the role of components within this control hierarchy? How do components

transfer control within the system? How is control shared among components? What is the control

topology? Is control synchronized or do components operate asynchronously?

Data. How are data communicated between components? Is the flow of data continuous, or are

data objects passed to the system sporadically? What is the mode of data transfer? Do data

components exist, and if so, what is their role? How do functional components interact with data

components? Are data components passive or active? How do data and control interact within

the system?

These questions provide the designer with an early assessment of design quality and lay

the foundation for more detailed analysis of the architecture.

ARCHITECTURAL DESIGN
As architectural design begins, the software to be developed must be put into context—that is, the

design should define the external entities (other systems, devices, people) that the software

interacts with and the nature of the interaction. Once context is modeled and all external software

interfaces have been described, you can identify a set of architectural archetypes.

An archetype is an abstraction (similar to a class) that represents one element of system

behavior. The set of archetypes provides a collection of abstractions that must be modeled

architecturally if the system is to be constructed, but the archetypes themselves do not provide

enough implementation detail.

Representing the System in Context

At the architectural design level, a software architect uses an architectural context diagram(ACD)

to model the manner in which software interacts with entities external to its boundaries. The

generic structure of the architectural context diagram is illustrated in following figure. Referring

to the figure, systems that interoperate with the target system (the system for which an architectural

design is to be developed) are represented as

• Superordinate systems—those systems that use the target system as part of some

higher-level processing scheme.

• Subordinate systems—those systems that are used by the target system and provide

data or processing that are necessary to complete target system functionality.

• Peer-level systems—those systems that interact on a peer-to-peer basis (i.e., information is

either produced or consumed by the peers and the target system.

• Actors—entities (people, devices) that interact with the target system by producing or

consuming information that is necessary for requisite processing.

Fig : Architectural context diagram

Defining Archetypes
An archetype is a class or pattern that represents a core abstraction that is critical to the

design of an architecture for the target system. In general, a relatively small set of archetypes is

required to design even relatively complex systems. The target system architecture is composed of

these archetypes, which represent stable elements of the architecture but may be instantiated many

different ways based on the behavior of the system.

The following archetypes can be used :

• Node. Represents a cohesive collection of input and output elements of the home security

function. For example a node might be comprised of (1) various sensors and (2) a variety

of alarm (output) indicators.

• Detector. An abstraction that encompasses all sensing equipment that feeds information

into the target system.

• Indicator. An abstraction that represents all mechanisms (e.g., alarm siren, flashing

lights, bell) for indicating that an alarm condition is occurring.

• Controller. An abstraction that depicts the mechanism that allows the arming or

disarming of a node. If controllers reside on a network, they have the ability to

communicate with one another.

Refining the Architecture into Components
As the software architecture is refined into components, the structure of the system begins

to emerge. The architecture must accommodate many infrastructure components that enable

application components but have no business connection to the application domain. Set of top-level

components that address the following functionality:

• External communication management—coordinates communication of the security

function with external entities such as other Internet-based systems and external alarm

notification.

• Control panel processing—manages all control panel functionality.

• Detector management—coordinates access to all detectors attached to the system.

• Alarm processing—verifies and acts on all alarm conditions.

Each of these top-level components would have to be elaborated iteratively and then positioned

within the overall architecture.

ASSESSING ALTERNATIVE ARCHITECTURAL DESIGNS

An Architecture Trade-Off Analysis Method

The Software Engineering Institute (SEI) has developed an architecture trade-off analysis

method (ATAM) that establishes an iterative evaluation process for software architectures. The

design analysis activities that follow are performed iteratively:

1. Collect scenarios. A set of use cases is developed to represent the system from the

user’s point of view.

2. Elicit requirements, constraints, and environment description. This information is

determined as part of requirements engineering and is used to be certain that all stakeholder

concerns have been addressed.

3. Describe the architectural styles/patterns that have been chosen to address the scenarios

and requirements. The architectural style(s) should be described using one of the following

architectural views:

• Module view for analysis of work assignments with components and the degree

to which information hiding has been achieved.

• Process view for analysis of system performance.

• Data flow view for analysis of the degree to which the architecture meets

functional requirements.

4. Evaluate quality attributes by considering each attribute in isolation. The number of

quality attributes chosen for analysis is a function of the time available for review and the

degree to which quality attributes are relevant to the system at hand. Quality attributes for

architectural design assessment include reliability, performance, security, maintainability,

flexibility, testability, portability, reusability, and interoperability.

5. Identify the sensitivity of quality attributes to various architectural attributes for a

specific architectural style. This can be accomplished by making small changes in the

architecture and determining how sensitive a quality attribute, say performance, is to the

change. Any attributes that are significantly affected by variation in the architecture are

termed sensitivity points.

6. Critique candidate architectures (developed in step 3) using the sensitivity analysis

conducted in step 5.

Architectural Complexity

A useful technique for assessing the overall complexity of a proposed architecture is to consider

dependencies between components within the architecture. These dependencies are driven by

information/control flow within the system. Zhao suggests three types of dependencies:

Sharing dependencies represent dependence relationships among consumers who use the same

resource or producers who produce for the same consumers

Flow dependencies represent dependence relationships between producers and consumers of

resources.

Constrained dependencies represent constraints on the relative flow of control among a set of

activities.

Architectural Description Languages
Architectural description language (ADL) provides a semantics and syntax for describing a

software architecture. Hofmann and his colleagues suggest that an ADL should provide the

designer with the ability to decompose architectural components, compose individual components

into larger architectural blocks, and represent interfaces (connection mechanisms) between

components.

ARCHITECTURAL MAPPING USING DATA FLOW

. A mapping technique, called structured design is often characterized as a data flow- oriented

design method because it provides a convenient transition from a data flow diagram to software

architecture. The transition from information flow (represented as a DFD) to program structure is

accomplished as part of a six step process:

(1) the type of information flow is established,

(2) flow boundaries are indicated,

(3) the DFD is mapped into the program structure,

(4) control hierarchy is defined,

(5) the resultant structure is refined using design measures and heuristics, and

(6) the architectural description is refined and elaborated.

In order to perform the mapping, the type of information flow must be determined. One

type of information flow is called transform flow and exhibits a linear quality. Data flows into

the system along an incoming flow path where it is transformed from an external world

representation into internalized form. Once it has been internalized, it is processed at a

transform center. Finally, it flows out of the system along an outgoing flow path that transforms

the data into external world.

Transform Mapping

Transform mapping is a set of design steps that allows a DFD with transform flow

characteristics to be mapped into a specific architectural style. To map data flow diagrams into a

software architecture, you would initiate the following design steps:

Step 1. Review the fundamental system model. The fundamental system model : The

fundamental system model or context diagram depicts the security function as a single

transformation, representing the external producers and consumers of data that flow into and out

of the function. The following figure depicts a level 0 context model, and the next figure shows

refined data flow for the security function.

Fig : Context-level DFD for the SafeHome security function

Fig : Level 1 DFD for the SafeHome security function

Step 2. Review and refine data flow diagrams for the software. Information obtained from the

requirements model is refined to produce greater detail

Step 3. Determine whether the DFD has transform or transaction flow characteristics.

Evaluating the DFD, we see data entering the software along one incoming path and exiting along

three outgoing paths. Therefore, an overall transform characteristic will be assumed for

information flow.

Step 4. Isolate the transform center by specifying incoming and outgoing flow boundaries.

Incoming data flows along a path in which information is converted from external to internal form;

outgoing flow converts internalized data to external form. Incoming and outgoing flow boundaries

are open to interpretation. That is, different designers may select slightly different points in the

flow as boundary locations.

Step 5. Perform “first-level factoring.” The program architecture derived using this mapping

results in a top-down distribution of control. Factoring leads to a program structure in which top-

level components perform decision making and low level components perform most input,

computation, and output work. Middle-level components perform some control and do moderate

amounts of work.

Step 6. Perform “second-level factoring.” Second-level factoring is

accomplished by mapping individual transforms (bubbles) of a DFD into

appropriate modules within the architecture. Beginning at the transform center

boundary and moving outward along incoming and then outgoing paths,

transforms are mapped into subordinate levels of the software structure. The

general approach to second level is a one-to-one mapping between DFD

transforms and software modules, different mappings frequently occur. Two or

even three bubbles can be combined and represented as one component, or a single

bubble may be expanded to two or more components.

Step 7. Refine the first-iteration architecture using design heuristics for

improved software quality. A first-iteration architecture can always be refined

by applying concepts of functional independence. Components are exploded or

imploded to produce sensible factoring, separation of concerns, good cohesion,

minimal coupling, and most important, a structure that can be implemented

without difficulty, tested without confusion, and maintained without grief.

Refining the Architectural Design

Refinement of software architecture during early stages of design is to be

encouraged. Design refinement should strive for the smallest number of

components that is consistent with effective modularity and the least complex data

structure that adequately serves information requirements.

Development

I. Rapid Software Development:

1. Agile Methods:

 Definition:

 Agile methods are a set of iterative and incremental software development approaches

that prioritize flexibility, collaboration, and customer feedback.

 Key Principles:

 Individuals and interactions over processes and tools.

 Working software over comprehensive documentation.

 Customer collaboration over contract negotiation.

 Responding to change over following a plan.

 Scrum:

 Iterative and incremental framework for managing complex software development.

 Employs time-boxed iterations called sprints.

 Kanban:

 Visualizes the workflow and limits work in progress.

 Emphasizes continuous delivery and optimization.

2. Extreme Programming (XP):

 Key Practices:

 Pair Programming: Two programmers work together at one workstation.

 Test-Driven Development (TDD): Writing tests before writing code.

 Continuous Integration: Frequent integration of code changes into a shared repository.

 Values:

 Communication, simplicity, feedback, and courage.

3. Rapid Application Development (RAD):

 Definition:

 RAD is an incremental software development process that prioritizes rapid prototyping

and quick feedback from end-users.

 Key Characteristics:

 Iterative development with user feedback at each iteration.

 Prototyping to visualize and refine system requirements.

 Time-boxed development cycles.

II. Software Evolution:

1. Program Evolution Dynamics:

 Definition:

 Program evolution refers to the process of modifying existing software to meet

changing requirements or correct defects.

 Key Dynamics:

 Continual Change: Software undergoes constant modifications.

 Increasing Complexity: Changes may introduce new complexities.

 Declining Structure: Over time, software structures tend to degrade.

2. Software Maintenance:

 Types of Maintenance:

 Corrective Maintenance: Fixing errors and defects.

 Adaptive Maintenance: Adapting software to new environments or requirements.

 Perfective Maintenance: Improving performance or adding features.

 Preventive Maintenance: Anticipating and preventing future problems.

3. Evolution Processes:

 Incremental Development:

 Adding new features or enhancements in small increments.

 Reduces the impact of change.

 Spiral Model:

 Combines elements of both incremental and iterative development.

 Emphasizes risk assessment and management.

4. Legacy System Evolution:

 Definition:

 A legacy system is an outdated software system that is still in use but may be difficult

to maintain or integrate with new technologies.

 Challenges:

 Lack of documentation, obsolete technologies, and resistance to change.

 Strategies:

 Reengineering: Restructuring or rewriting parts of the system.

 Wrapping: Creating an interface around the legacy system for compatibility.

 Migration: Gradual transition to a new system.

III. Best Practices:

 Continuous Integration:

 Regularly integrate code changes to detect and fix issues early.

 Automated Testing:

 Implement comprehensive test suites to ensure software quality.

 Customer Involvement:

 Keep customers involved throughout the development process for timely feedback.

 Documentation:

 Maintain up-to-date documentation to aid in future development and maintenance.

	Design Concepts
	DESIGN WITHIN THE CONTEXT OF SOFTWARE ENGINEERING
	Fig : Translating the requirements model into the design model

	THE DESIGN PROCESS
	Software Quality Guidelines and Attributes
	The Evolution of Software Design

	DESIGN CONCEPTS
	Abstraction
	data abstractions.
	Architecture
	Patterns
	Separation of Concerns
	8.3.5 Modularity
	Fig : Modularity and software cost
	Functional Independence
	Refinement
	Aspects
	Refactoring
	Object-Oriented Design Concepts
	Design Classes

	THE DESIGN MODEL
	3.4.1. Data Design Elements
	Fig : Dimensions of the design model
	3.4.3. Interface Design Elements
	Component-Level Design Elements
	Deployment-Level Design Elements

	Architectural Design
	SOFTWARE ARCHITECTURE
	What Is Architecture?
	“The software architecture of a program or computing system is the structure or structures of the system, which comprise software components, the externally visible properties of those components, and the relationships among them.”
	Why Is Architecture Important?
	Architectural Descriptions
	Architectural Decisions

	ARCHITECTURAL GENRES
	ARCHITECTURAL STYLES
	A Brief Taxonomy of Architectural Styles
	Fig : Data-centered architecture
	Fig : Data-flow architecture
	Fig : Main program/subprogram architecture
	Fig : Layered architecture
	Organization and Refinement

	ARCHITECTURAL DESIGN
	Representing the System in Context
	Fig : Architectural context diagram
	Refining the Architecture into Components

	ASSESSING ALTERNATIVE ARCHITECTURAL DESIGNS
	An Architecture Trade-Off Analysis Method
	Architectural Complexity
	Architectural Description Languages

	ARCHITECTURAL MAPPING USING DATA FLOW
	Transform Mapping
	Fig : Context-level DFD for the SafeHome security function
	Refining the Architectural Design

