
Chapter 13

BOOLEAN ALGEBRA

GOALS
In this section we will develop an algebra that is particularly important to computer scientists, as it is the mathematical foundation of computer
design,  or  switching  theory.  This  algebra  is  called  Boolean  algebra  after  the  mathematician  George  Boole  (1815-64).  The  similarities  of
Boolean algebra and the algebra of sets and logic will be discussed, and we will discover special properties of finite Boolean algebras.

George Boole, 1815 - 1864

   In order to achieve these goals, we will recall the basic ideas of posets introduced in Chapter 6 and develop the concept of a lattice, which has
applications in finite-state machines.
   The reader should view the development of the topics of this chapter as another example of an algebraic system. Hence, we expect to define
first the elements in the system, next the operations on the elements, and then the common properties of the operations in the system.

13.1 Posets Revisited
From Chapter 6, Section 3, we recall the following definition:
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Definition:   Poset. A set L on which a partial ordering relation (reflexive, antisymmetric, and transitive) r is defined is called a partially
ordered set, or poset, for short.
   We recall a few examples of posets:

   (1)  L = R and r is the relation §.

   (2)  L = PHAL where A = 8a, b< and r is the relation Œ.

   (3)   L = 81, 2, 3, 6<  and  r  is  the  relation  |  (divides).  We  remind  the  reader  that  the  pair  Ha, bL  as  an  element  of  the  relation  r  can  be
expressed as Ha, bL œ r, or a r b, depending on convenience and readability.
   The posets we will concentrate on in this chapter will be those which have maxima and minima. These partial orderings resemble that of § on
R, so the symbol § is used to replace the symbol r in the definition of a partially ordered set. Hence, the definition of a poset becomes:

Definition: Poset.  A set on which a partial ordering, §  , is defined is called a partially ordered set, or, in brief, a poset. Here, § is a
partial ordering on L if and only if for all a, b, c œ L:
   (1)  a § aHreflexivityL,
   (2)  a § b and b § a a = b (antisymmetry), and

   We now proceed to introduce maximum and minimum concepts. To do this, we will first define these concepts for two elements of the poset
L, and then define the concepts over the whole poset L.

Definition:   Lower Bound, Upper Bound. Let a, b œ L, a poset. Then c œ L is a lower bound of a and b if c § a and c § b. d œ L is
an upper bound of a and b if a § d and b § d.

Definition:    Greatest  Lower Bound.  Let  L be a poset  and §   be the partial  ordering on L.    Let  a, b œ L, then g œ L is  a greatest
lower bound of a and b, denoted glbHa, bL,  if and only if 

Ë g § a ,

Ë g § b,  and

Ë if g ' œ L such that if g ' § a and g ' § b, then g ' § g.  

The last condition says, in other words, that if g ' is also a lower bound, then g is "greater" than g ', so g is a greatest lower bound.

The definition of a least upper bound is a mirror image of a greatest lower bound:

Definition:  Least Upper Bound.  Let L be a poset and § be the partial ordering on L.   Let a, b œ L, then { œ L is a least upper bound
of a and b, denoted lubHa, bL,  if and only if 

Ë a § {  ,

Ë b § { ,  and

Ë if { ' œ L such that if a § { ' and b § { ', then { § { '.  

Notice that the two definitions above refer to "...a greatest lower bound"  and "a least upper bound."  Any time you define an object like these
you need to have an open mind as to whether more than one such object can exist.  In fact, we now can prove that there can't be two greatest
lower bounds or two least upper bounds.

Theorem 13.1.1.   Let L be a poset and § be the partial ordering on L, and a, b œ L.  If a greatest lower bound of a and b exists, then it
is unique.  The same is true of a least upper bound, if it exists.

Proof:   Let g and g' be greatest lower bounds of a and b.   We will prove that g = g '. 

(1)  g a greatest lower bound of a and b g is a lower bound of a and b.

(2)  g ' a greatest lower bound of a and b and  g a lower bound of a and b g § g ' by the definition of greatest lower bound.

(3)  g ' a greatest lower bound of a and b g ' is a lower bound of a and b.

(4)  g a greatest lower bound of a and b and  g' a lower bound of a and b g ' § g by the definition of greatest lower bound.

(5)   g § g ' and g ' § g g = g '  by the antisymmetry property of a partial ordering. 

The proof of the second statement in the theorem is almost identical to the first and is left to the reader.  ‡

Definition:    Greatest  Element,  Least  Element.  Let  L  be  a  poset.     M œ L  is  called  the  greatest  (maximum)  element  of  L  if,  for  all
a œ L, a § M. In addition, m œ L is called the least (minimum) element of L if for all a œ L, m § a.

Note: The greatest and least elements, when they exist, are frequently denoted by 1 and 0 respectively.

Example 13.1.1.   Let L = 81, 3, 5, 7, 15, 21, 35, 105< and let § be the relation | (divides) on L. Then L is a poset. To determine the
lub  of  3  and  7,  we  look  for  all  { œ L,  such  that  3 {  and  7 {.  Certainly,  both  { = 21  and  { = 105  satisfy  these  conditions  and  no  other
element of L does. Next, since 21 105, then 21 = lubH3, 7L. Similarly, the lubH3, 5L = 15. The greatest element of L is 105 since a 105 for
all  a œ L.  To find the glb  of 15 and 35, we first  consider all  elements g  of L  such that g  |  15 and g  |  35. Certainly, both g = 5 and g = 1
satisfy these conditions. But since 1 5, then  glb H15, 35L = 5. The least element of L is 1 since 1 a for all a œ L.
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   Henceforth,  for  any  positive  integer  n,  Dn  will  denote  the  set  of  all  positive  integers  which  are  divisors  of  n.  For  example,  the  set  L  of
Example 13.1.1 is D105.

Example  13.1.2.    Consider  the  poset  PHAL,  where  A = 8a, b, c<,  with  the  relation  Œ  on  PHAL.  The  glb  of  the  8a, b<  and  8a, c<  is
g = 8a<.  For any other element g' of M  which is a subset of 8a, b<  and 8a, c<  (there is only one; what is it?),  g ' Œ g.  The least element of
PHAL is « and the greatest element of P(A) is A = 8a, b, c<. The Hasse diagram of P(A) is shown in Figure 13.1.1.

«

81< 82< 83<

81, 2< 81, 3< 82, 3<

81, 2, 3<

Figure 13.1.1
Example 13.1.2

   With a little practice, it is quite easy to find the least upper bounds and greatest lower bounds of all possible pairs in P HAL directly from the
graph of the poset.
   The previous examples and definitions indicate that the lub and glb are defined in terms of the partial ordering of the given poset. It is not yet
clear whether all posets have the property such every pair of elements has both a lub and a glb. Indeed, this is not the case (see Exercise 3).

EXERCISES FOR SECTION 13.1
A Exercises
1.    Let D30 = 81, 2, 3, 5, 6, 10, 15, 30< and let the relation | be a partial ordering on D30.

       (a)    Find all lower bounds of 10 and 15.

       (b)    Find the glb of 10 and 15.

       (c)    Find all upper bounds of 10 and 15.

       (d)    Determine the lub of 10 and 15.

       (e)     Draw the Hasse diagram for D30  with |. Compare this Hasse diagram with that of Example 13.1.2. Note that the two diagrams are
structurally the same.
2.     List the elements of the sets D8, D50, and D1001. For each set, draw the Hasse diagram for "divides."

3.     Figure 13.1.2 contains Hasse diagrams of posets.

       (a)   Determine the lub and glb of all pairs of elements when they exist. Indicate those pairs that do not have a lub (or a glb).    

       (b)   Find the least and greatest elements when they exist.
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Exercise 3

4.    For the poset HN, §L, what are glbHa, bL and lubHa, bL? Are there least and/or greatest elements?

5.   (a)  Prove the second part of Theorem 13.1.1, the least upper bound of two elements in a poset is unique, it one exists. 

      (b) Prove that if a poset L has a least element, then that element is unique.

6.     We  naturally  order  the  numbers  in  Am = 81, 2, . . . , m<  with  "less  than  or  equal  to,"  which  is  a  partial  ordering.  We  may  order  the
elements of Am µ An  by Ha, bL § Ha ', b 'L Í a § a ' and b § b '.
       (a)  Prove that this defines a partial ordering of Am µ An.

       (b)  Draw the ordering diagrams for § on A2 µ A2 , A2µ A3, and A3 µ A3 .

    (c)  What are glb HHa, bL, Ha ', b ' LL and lubHHa, bL, Ha ', b ' LL? 

(d)Are there least and/or greatest elements in Am µAn?

13.2 Lattices 
In this  section,  we restrict  our  discussion to lattices,  those posets  where every pair  of  elements  has a  lub  and a  glb.  We first  introduce some
notation.
Definitions:   Join, Meet. Let L be a poset under an ordering § . Let a, b œ L. We define:

   a Í b (read "a join b") as the least upper bound of a and b, and 

   a Ï b (read "a meet b") as greatest lower bound of a and b.

Since the join and meet operations produce a unique result  in all cases where they exist, by Theorem 13.1.1, we can consider them as binary
operations on a set if they aways exist.   Thus the following definition:

Definition: Lattice. A lattice is a poset L (under § ) in which every pair of elements has a lub and a glb. Since a lattice L is an algebraic
system with binary operations  and  , it is denoted by @L; Í, ÏD.
   In Example 13.1.2. the operation table for the lub  operation is easy, although admittedly tedious, to do.  We can observe that every pair of
elements in this poset has a least upper bound. In fact, A Í B = A ‹ B.
   The reader is encouraged to write out the operation table for the glb operation and to note that every pair of elements in this poset also has a
glb, so that PHAL together with these two operations is a lattice. We further observe that:
   (1)  @PHAL; Í , Ï D is a lattice (under Œ ) for any set A, and

  (2)  the join operation is the set operation of union and the meet operation is the operation intersection; that is, Í =‹ and Ï =› .

It  can  be  shown  (see  the  exercises)  that  the  commutative  laws,  associative  laws,  idempotent  laws,  and  absorption  laws  are  all  true  for  any
lattice. An example of this is clearly @PHAL; ‹, ›D, since these laws hold in the algebra of sets.  This lattice is also distributive in that join is
distributive over meet and meet is distributive over join. This is not always the case for lattices in general however.
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Definition:   Distributive Lattice.  Let @L; Í , ÏD be a lattice (under §). @L; Í , Ï < is called a distributive lattice if and only if the distribu-
tive laws hold; that is, for all a, b, c œ L, we have:
                         a Í Hb Ï cL = Ha Í bL Ï Ha cL and 

                         a Ï Hb Í cL = Ha Ï bL Í Ha cL.
Example 13.2.1.   If A is any set, the lattice @PHAL; ‹, ›D  is distributive.

Example 13.2.2.   We now give an example of a lattice where the distributive laws do not hold. Let L = 81, 2, 3, 5, 30<. Then L is a poset
under the relation divides. The operation tables for  and  on L are:

   

Í 1 2 3 5 30
1
2
3
5

30

1 2 3 5 30
2 2 30 30 30
3 30 3 30 30
5 30 30 5 30

30 30 30 30 30

   

Ï 1 2 3 5 30
1
2
3
5

30

1 1 1 1 1
1 2 1 1 2
1 1 3 1 3
1 1 1 5 5
1 2 3 5 30

   Since every pair of elements in L has both a join and a meet, @L; Í , ÏD  is a lattice (under divides). Is this lattice distributive? We note that:

                          2 Í H5 Ï 3L = 2 Í 1 = 2 and

                          H2 Í 5L Ï H2 Í 3L = 30 Ï 30 = 30,

so that a Í Hb Ï cL ¹≠ Ha Í bL Ï Ha cL for some values of a, b, c œ L. Hence L is not a distributive lattice.

   It can be shown that a lattice is nondistributive if and only if it contains a sublattice isomorphic to one of the lattices in Figure 13.2.1.

0

a

c

1

b

0

ab c

1

Figure 13.2.1
Nondistributive lattices

   It is interesting to note that for the relation "divides" on P, if a, b œ P we have:

   a Í b = lcm Ha, bL, the least common multiple of a and b; that is, the smallest integer (in P) that is divisible by both a and b;    

   a Ï b = gcdHa, bL, the greatest common divisor of a and b; that is, the largest integer that divides both a and b.

EXERCISES FOR SECTION 13.2
A Exercises
1.    Let L be the set of all propositions generated by p and q.  What are the meet and join operations in this lattice.   What are the maximum and
minimum elements?
2.   Which of the posets in Exercise 3 of Section 13.1 are lattices? Which of the lattices are distributive?

B Exercises
3.    (a)   State the commutative laws, associative laws, idempotent laws, and absorption laws for lattices.
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       (b) Prove these laws.

4.    Let @L; Í , ÏD be a lattice based on a partial ordering §.   Prove that if a, b, c œ L,  

       (a)   a Í b ¥ a.

       (b)   a Ï b § a.

       (c)  a ¥ b and a ¥ c a ¥ b Í c.

13.3 Boolean Algebras
In order to define a Boolean algebra, we need the additional concept of complementation.

Definition:  Complemented Lattice. Let @L; Í, ÏD be a lattice that contains a least element, 0, and a greatest element, 1. @L; Í, ÏD is called a
complemented lattice if and only if for every element a œ L, there exists an element a in L such that a a = 0 and a a = 1. Such an element a
is called a complement of the element a.

Example 13.3.1.   Let L = PHAL, where A = 8a, b, c<. Then @L; ‹, ›D is a bounded lattice with 0 = « and 1 = A. Then, to find if it
exists, the complement, B, of, say B = 8a, b< œ L, we want B such that

                           8a, b< › B = « and 8a, b< ‹ B = A .

Here,  B = 8c<,  and since it  can be shown that each element of L  has a complement (see Exercise 1),  @L; ‹, ›D  is  a complemented lattice.
Note that if A is any set and L = PHAL, then @L; ‹, ›D is a complemented lattice where the complement of B œ L is B = B c = A - B.
   In Example 13.3.1, we observe that the complement of each element of L is unique. Is this always the case? The answer is no. Consider the
following.

Example 13.3.2.   Let L = 81, 2, 3, 5, 30< and consider the lattice @L; Í , ÏD (under "divides"). The least element of L is 1 and the
greatest element is 30. Let us compute the complement of the element a = 2. We want to determine a such that 2 Ï a = 1 and 2 Í a = 30.
Certainly, a = 3 works, but so does a = 5, so the complement of a = 2 in this lattice is not unique. However, @L; Í , ÏD is still a comple-
mented lattice since each element does have at least one complement.
   The following theorem gives us an insight into when uniqueness of complements occurs.

Theorem 13.3.1.   If @L; Í , ÏD is a complemented and distributive lattice, then the complement a of any element a œ L is unique.

   Proof: Let a œ L and assume to the contrary that a has two complements, namely a1 and a2. Then by definition of complement,

                            a a1 = 0 and a a1 = 1, 

Also,

                            a a2 = 0 and a a2 = 1. 

So that

                                  a1 = a1 Ï 1 = a1 Ha a2L
= Ha1 aL Ha1 a2L
= 0 Í Ha1 a2L
= a1 a2.

On the other hand,

                                   a2 = a2 Ï 1 = a2 Ha a1L
= Ha2 aL Ha2 a1L
= 0 Í Ha2 a1L
= a2 a1.

Hence a1 = a2 , which contradicts the assumption that a has two different complements, a1 and a2.  ‡

Definition:    Boolean  Algebra.   A  Boolean  algebra  is  a  lattice  that  contains  a  least  element  and  a  greatest  element  and  that  is  both
complemented and distributive.
   Since the complement of each element in a Boolean algebra is unique (by Theorem 13.3.1), complementation is a valid unary operation over
the set under discussion, and we will list it together with the other two operations to emphasize that we are discussing a set together with three
operations. Also, to help emphasize the distinction between lattices and lattices that are Boolean algebras, we will use the letter B as the generic
symbol for the set of a Boolean algebra; that is, @B; -, Í , ÏD will stand for a general Boolean algebra.
Example  13.3.3.    Let  A  be  any  set,  and  let  B = PHAL.  Then  @B; c, ‹ , ›D  is  a  Boolean  algebra.  Here,  c  stands  for  the  complement  of  an
element of B with respect to A, A - B.
   This is a key example for us since all finite Boolean algebras and many infinite Boolean algebras look like this example for some A. In fact, a
glance at the basic Boolean algebra laws in Table 13.3.1, in comparison with the set laws of Chapter 4 and the basic laws of logic of Chapter 3,
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indicates that all three systems behave the same; that is, they are isomorphic.
   The "pairing" of the above laws reminds us of the principle of duality, which we state for a Boolean algebra.

Definition:   Principle of Duality for Boolean Algebras. Let @B; -, Í , ÏD be a Boolean algebra (under §), and let S be a true statement for@B; -, Í , ÏD. If S* is obtained from S by replacing § by ¥ (this is equivalent to turning the graph upside down),  by ,  by , 0 by 1, and
1 by 0, then S*  is also a true statement.

TABLE 13.3.1 

Basic Boolean Algebra Laws

_________________________________________________________________

Commutative Laws

1.   a Í b = b Í a                                     1.'  a Ï b = b Ï a 

_________________________________________________________________

Associative Laws

2.   a Í Hb Í cL = Ha Í bL Í c               2.' a Ï Hb Ï cL = Ha Ï bL Ï c

_________________________________________________________________

Distributive Laws

3.   a Ï Hb Í cL = Ha Ï bL Í Ha cL    3.' a Í Hb Ï cL = Ha Í bL Ï Ha cL
_________________________________________________________________

Identity Laws

4.   a Í 0 = 0 Í a = a                              4.'   a Ï 1 = 1 Ï a = a

_________________________________________________________________

Complement Laws

5.  a a = 1                                             5.'     a a = 0

_________________________________________________________________

Idempotent Laws

6.  a a = a                                             6.'   a a = a

_________________________________________________________________

Null Laws

7.   a Í 1 = 1                                            7.'   a Ï 0 = 0 

_________________________________________________________________

Absorption Laws

8.   a Í Ha Ï bL = a                                 8.'   a Ï Ha Í bL = a 

_________________________________________________________________

DeMorgan's Laws

9.   a Í b = a b                                   9.'   a Ï b = a b 
_________________________________________________________________

Involution Law 

10.   a = a
Example 13.3.4. The laws 1' through 9' are the duals of the Laws 1 through 9 respectively. Law 10 is its own dual.

   We close this section with some comments on notation. The notation for operations in a Boolean algebra is derived from the algebra of logic.
However, other notations are used. These are summarized in the following chart;
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Notation used in this textHMathematics notationL Set Notation Logic DesignHCS êEE notationL Read asÍ ‹ Å⊕ join
Ï › Ä⊗ meet

c complement
§ Œ § underlying partial ordering

   Mathematicians most frequently use the notation of the text, and, on occasion, use set notation for Boolean algebras. Thinking in terms of sets
may  be  easier  for  some  people.  Computer  designers  traditionally  use  the  arithmetic  and  notation.   In  this  latter  notation,  DeMorgan's  Laws
become:

(9)   a Å⊕ b = a Ä⊗ b 
and

(9')   a Ä⊗ b = a Å⊕ b.

EXERCISES FOR SECTION 13.3
       A Exercises
1.    Determine the complement of each element B œ L in Example 13.3.1. Is this lattice a Boolean algebra? Why?

2.    (a) Determine the complement of each element of D6 in @D6; Í, ÏD.
       (b)  Repeat part a using the lattice in Example 13.2.2.

       (c)  Repeat part a using the lattice in Exercise 1 of Section 13.1.

       (d)  Are the lattices in parts a, b, and c Boolean algebras? Why?

3.    Determine which of the lattices of Exercise 3 of Section 13.1 are Boolean algebras.

4.    Let A = 8a, b< and B = PHAL.
       (a)   Prove that @B; c, ‹, ›D is a Boolean algebra.

       (b)   Write out the operation tables for the Boolean algebra.

5.   It can be shown that the following statement, S, holds for any Boolean algebra @B; -, Í , ÏD : Ha Ï bL = a if a § b.

       (a)  Write the dual, S*, of the statement S.

       (b)  Write the statement S and its dual, S*, in the language of sets.

       (c)  Are the statements in part b true for all sets?

       (d)  Write the statement S and its dual, S*, in the language of logic.

       (e)  Are the statements in part d true for all propositions?

6.    State the dual of:

       (a)   a Í Hb Ï aL = a.

       (b)   a Î HIb aM Ì bL = 1.

       (c)   Ha bL Ì b = a Í b.
       B Exercises

7.    Formulate a definition for isomorphic Boolean algebras.

13.4 Atoms of a Boolean Algebra
In this section we will look more closely at previous claims that every finite Boolean algebra is isomorphic to an algebra of sets. We will show
that every finite Boolean algebra has 2n elements for some n with precisely n generators, called atoms.
   Consider the Boolean algebra @B; -, Í , ÏD, whose graph is:
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Figure 13.4.1
Illustration of the atom concept

   We  note  that  1 = a1 a2 a3,  b1 = a1 a2,  b2 = a1 a3,  and  b3 = a2 a3;  that  is,  each  of  the  elements  above  level  one  can  be
described completely and uniquely in terms of the elements on level one. The ai s have uniquely generated the nonzero elements of B much like
a  basis  in  linear  algebra  generates  the  elements  in  a  vector  space.  We  also  note  that  the  ai s  are  the  immediate  successors  of  the  minimum
element,  0.  In  any  Boolean  algebra,  the  immediate  successors  of  the  minimum element  are  called  atoms.  Let  A  be  any  nonempty  set.  In  the
Boolean algebra @PHAL; c, ‹, ›D (over Œ), the singleton sets are the generators, or atoms, of the algebraic structure since each element P HAL
can be described completely and uniquely as the join or union of singleton sets.

Definition:  Atom.  A  nonzero  element  a  in  a  Boolean  algebra  @B; -, , D  is  called  an  atom  if  for  every  x œ B,  x a = a  or
x a = 0.
   The condition that x a = a tells us that x is a successor of a; that is, a § x, as depicted in Figure 13.4.2a.

   The condition x a = 0 is true only when x and a are "not connected." This occurs when x is another atom or if x is a successor of atoms
different from a, as depicted in Figure 13.4.2b.

HaL HbL
a 0

a

x

x

Figure 13.4.2

Example 13.4.1.    The set  of  atoms of  the  Boolean algebra  @D30; -, Í , ÏD  is  M = 82, 3, 5<.  To see  that  a = 2 is  an atom,  let  x  be  any
nonzero  element  of  D30  and  note  that  one  of  the  two  conditions  x Ï 2 = 2  or  x Ï 2 = 1  holds.  Of  course,  to  apply  the  definition  to  this
Boolean algebra, we must remind ourselves that in this case the 0-element is 1, the operation  is gcd, and the poset relation § is "divides." So
if  x = 10,  we  have  10 Ï 2 = 2  (or  2  |  10),  so  Condition  1  holds.  If  x = 15,  the  first  condition  is  not  true.  (Why?)  However,  Condition  2,
15 Ï 2 = 1, is true. The reader is encouraged to show that each of the elements 2, 3, and 5 satisfy the definition (see Exercise 13.4.1). Next, if
we compute the join (lcm in this case) of all possible combinations of the atoms 2, 3, and 5, we will generate all nonzero elements of D30. For
example, 2 Í 3 Í 5 = 30 and 2 Í 5 = 10. We state this concept formally in the following theorem, which we give without proof.

Theorem 13.4.1.   Let @B; -, , D be any finite Boolean algebra. Let A = 8a1, a2, . . . , an< be the set of all n atoms of @B; -, , D.
Then every nonzero element in B can be expressed uniquely as the join of a subset of A.
   We now ask ourselves if we can be more definitive about the structure of different Boolean algebras of a given order. Certainly, the Boolean
algebras @D30; -, Í , ÏD and @PHAL; c, ‹, ›D have the same graph (that of Figure 13.4.1), the same number of atoms, and, in all respects,
look  the  same  except  for  the  names  of  the  elements  and  the  operations.  In  fact,  when  we  apply  corresponding  operations  to  corresponding
elements,  we  obtain  corresponding  results.  We  know  from  Chapter  11  that  this  means  that  the  two  structures  are  isomorphic  as  Boolean
algebras.  Furthermore,  the  graphs  of  these  examples  are  exactly  the  same  as  that  of  Figure  13.4.1,  which  is  an  arbitrary  Boolean  algebra  of
order 8 = 23 .
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   In these examples of a Boolean algebra of order 8, we note that each had 3 atoms and 23 = 8 number of elements, and all were isomorphic to@PHA L; c, ‹, ›D, where A = 8a, b, c<. This leads us to the following questions:
   (1)  Are there any other different (nonisomorphic) Boolean algebras of order 8?

   (2)  What is the relationship, if any, between finite Boolean algebras and their atoms?

  (3)  How many different (nonisomorphic) Boolean algebras are there of order 2? Order 3? Order 4? And so on.

   The answers  to  these questions are  given in the following theorem and corollaries.  We include the proofs  of  the corollaries  since they are
instructive.
Theorem  13.4.2.    Let  @B; -, , D  be  any  finite  Boolean  algebra,  and  let  A  be  the  set  of  all  atoms  in  this  Boolean  algebra.  Then@B; -, , D is isomorphic to @P HAL; c, ‹, ›D.
Corollary 13.4.1.   Every finite Boolean algebra @B; -, , D has 2n elements for some positive integer n.

   Proof:  Let  A  be  the  set  of  all  atoms  of  B  and  let  †A§ = n.  Then  there  are  exactly  2n  elements  (subsets)  in  PHAL,  and  by  Theorem 13.4.2,@B; -, Í , ÏD is isomorphic to @PHAL; c, ‹, ›D.  ‡
Corollary 13.4.2.    All Boolean algebras of order 2n are isomorphic to each other. (The graph of the Boolean algebra of order 2n is the n-cube).

   Proof:   By Theorem 13.4.2, every Boolean algebra of order 2n  is isomorphic to @PHAL; c, ‹, ›D when †A§ = n. Hence, they are all isomor-
phic to one another.  ‡
   The  above  theorem and  corollaries  tell  us  that  we  can  only  have  finite  Boolean  algebras  of  orders  21, 22, 23, . . . , 2n,  and  that  all  finite
Boolean algebras  of  any given order  are  isomorphic.  These are  powerful  tools  in  determining the structure  of  finite  Boolean algebras.  In  the
next section, we will try to find the easiest way of describing a Boolean algebra of any given order.
EXERCISES FOR SECTION 13.4

       A Exercises

1.    (a) Show that a = 2 is an atom of the Boolean algebra @D30; -, Í , ÏD.
       (b)  Repeat part a for the elements 3 and 5 of D30.

       (c)  Verify Theorem 13.4.1 for the Boolean algebra @D30; -, Í , ÏD.
2.    Let A = 8a, b, c<.
       (a)  Rewrite the definition of atom for @PHAL; c, ‹, ›D. What does a § x mean in this example?

       (b)  Find all atoms of @PHAL; c, ‹, ›D.
       (c)  Verify Theorem 13.4.1 for @PHAL; c, ‹, ›D.
3.    Verify Theorem 13.4.2 and its corollaries for the Boolean algebras in Exercises 1 and 2 of this section.

4.   Give a description of all Boolean algebras of order 16. (Hint: Use Theorem 13.4.2.) Note that the graph of this Boolean algebra is given in
Figure 9.4.5.
5.    Corollary 13.4.1 states that there do not exist Boolean algebras of orders 3, 5, 6, 7, 9, etc. (orders different from 2n). Prove that we cannot
have a Boolean algebra of order 3. (Hint: Assume that @B; -, Í , ÏD is a Boolean algebra of order 3 where B = 80, x, 1< and show that this
cannot happen by investigating the possibilities for its operation tables.)
6.    (a)  There are many different, yet isomorphic, Boolean algebras with two elements. Describe one such Boolean algebra that is derived from
a power set, PHAL, under Œ. Describe a second that is described from Dn, for some n œ P, under "divides." 
       (b)  Since the elements of a two-element Boolean algebra must be the greatest and least elements, 1 and 0, the tables for the operations on
{0, 1} are determined by the Boolean algebra laws. Write out the operation tables for @80, 1<; -, Í , ÏD.
       B Exercises

7.    Find a Boolean algebra with a countably infinite number of elements.

8.     Prove that the direct product of two Boolean algebras is a Boolean algebra. (Hint: "Copy" the corresponding proof for groups in Section
11.6.)
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13.5 Finite Boolean Algebras as n-tuples of 0's and 1's
From the  previous  section  we know that  all  finite  Boolean algebras  are  of  order  2n,  where  n  is  the  number  of  atoms in  the  algebra.  We can
therefore completely describe every finite Boolean algebra by the algebra of power sets. Is there a more convenient, or at least an alternate way,
of  defining  finite  Boolean  algebras?  In  Chapter  11  we  found  that  we  could  produce  new groups  by  taking  Cartesian  products  of  previously
known groups. We imitate this process for Boolean algebras.
The  simplest  nontrivial  Boolean  algebra  is  the  Boolean  algebra  on  the  set  B2 = 80, 1<.  The  ordering  on  B2  is  the  natural  one,
0 b 0, 0 b 1, 1 b 1.  If  we  treat  0  and  1  as  the  truth  values  "false"  and  "true,"  respectively,  we  see  that  the  Boolean  operationsÍ HjoinL and Ï HmeetL are nothing more than the logical connectives Í HorL and Ï HandL. The Boolean operation, -, (complementation) is the
logical Ÿ (negation). In fact, this is why the symbols -, Í , and Ï were chosen as the names of the Boolean operations. The operation tables
for @B2; -, Í , ÏD  are simply those of "or," "and," and "not," which we repeat here:

Í 0 1
0
1

0 1
1 1

       
Ï 0 1
0
1

0 0
0 1

       
u u
0
1

1
0

By Theorem 13.4.2 and its corollaries, all Boolean algebras of order 2 are isomorphic to this one.

We  know  that  if  we  form  B2 äB2 = B22  we  obtain  the  set  8H0, 0L, H0, 1L, H1, 0L, H1, 1L<,  a  set  of  order  4.  We  define  operations  on  B22  the
natural way, namely, componentwise, so that H0, 1L Í H1, 1L = H0 Í 1, 1 Í 1L = H1, 1L, H0, 1L Ï H1, 1L = H0 Ï 1, 1 Ï 1L = H0, 1L and H0, 1L =I0, 1M = H1, 0L. We claim that B22  is a Boolean algebra under the componentwise operations. Hence, @B22; -, Í , ÏD is a Boolean algebra of
order 4. Since all Boolean algebras of order 4 are isomorphic to each other, we have found a simple way of describing all Boolean algebras of
order 4.
It  is quite clear that we can describe any Boolean algebra of order 8 by considering B2 äB2 äB2 = B23  and, in general,  any Boolean algebra of
order 2n— that is, all finite Boolean algebras—by B2n = B2 äB2 äº⋯B2 Hn factorsL.
EXERCISES FOR SECTION 13.5
A Exercises
1. (a) Write out the operation tables for @B22; -, Í , ÏD.
(b) Draw the Hasse diagram for @B22; -, Í , ÏD and compare your results with Figure 9.4.6.
(c) Find the atoms of this Boolean algebra.

2. (a) Write out the operation table for @B23; -, Í , ÏD.
    (b) Draw the Hasse diagram for @B23; -, Í , ÏD and compare the results with Figure 9.4.6.

3.  (a) List all atoms of B24.

     (b) Describe the atoms of B2n n r 1.

B Exercise
4. Theorem 13.4.2 tells us we can think of any finite Boolean algebra in terms of sets. In Chapter 4, Section 3, we defined the terms minset and
minset normal form. Rephrase these definitions in the language of Boolean algebra. The generalization of minsets are called minterms.

13.6 Boolean Expressions
In this section, we will use our background from the previous sections and set theory to develop a procedure for simplifying Boolean expres-
sions. This procedure has considerable application to the simplification of circuits in switching theory or logical design.

Definition:  Boolean Expression.  Let  @B; -, , D  be  any  Boolean algebra.  Let  x1, x2, …, xk  be  variables  in  B;  that  is,  variables
that can assume values from B. A Boolean expression generated by x1, x2, …, xk  is  any valid combination of  the xi  and the elements of  B
with the operations of meet, join, and complementation.
This definition, as expected, is the analog of the definition of a proposition generated by a set of propositions, presented in Section 3.2.

Each Boolean expression generated by k variables, eHx1, …, xkL, defines a function f : Bk Ø B where f Ha1, …, akL = eHa1, …, akL. If B is a
finite  Boolean  algebra,  then  there  are  a  finite  number  of  functions  from  Bk  into  B.  Those  functions  that  are  defined  in  terms  of  Boolean
expressions are called Boolean functions. As we will see, there is an infinite number of Boolean expressions that define each Boolean function.
Naturally,  the "shortest"  of  these expressions will  be preferred.  Since electronic circuits  can be described as  Boolean functions with B = B2  ,
this economization is quite useful.

                 
                     

                           
                        Applied Discrete Structures by Alan Doerr & Kenneth Levasseur is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States 



Example  13.6.1.  Consider  any  Boolean  algebra  @B; -, Í , ÏD  of  order  2.  How  many  functions  f : B2 Ø B  are  there?  First,  all
Boolean algebras of order 2 are isomorphic to @B2; -, Í , ÏD so we want to determine the number of functions f : B22 Ø B2. If we consider
a Boolean function of two variables, x1  and x2, we note that each variable has two possible values 0 and 1, so there are 22  ways of assigning
these two values to the k = 2 variables. Hence, the table below has 22 = 4 rows. So far we have a table such as that labeled 13.6.1.

x1 x2 f Hx1, x2L
0
0
1
1

0
1
0
1

?
?
?
?

Table 13.6.1
General Form Of Boolean Function f Hx1, x2L of Example 13.6.1

How  many  possible  different  function  values  f Hx1, x2L  can  there  be?  To  list  a  few: f1Hx1, x2L = x1,  f2Hx1, x2L = x2,  f3Hx1, x2L = x1 x2,
f4Hx1, x2L = Hx1 x2L Í x2 , f5Hx1, x2L = x1 x2 x2,  etc. Each of these will give a table like that of Table 13.6.1. The tables for f1 , and f3
appear in Table 13.6.2.

x1 x2 f1Hx1, x2L
0
0
1
1

0
1
0
1

0
0
1
1

x1 x2 f3Hx1, x2L
0
0
1
1

0
1
0
1

0
1
1
1

Table 13.6.2
Boolean Functions f1 and f3 of Example 13.6.1

Two functions are different if and only if their tables (values) are different for at least one row.  Of course by using the basic laws of Boolean
algebra we can see that f3 = f4. Why? So if we simply list by brute force all "combinations" of x1 and x2  we will obtain unnecessary duplica-
tion. However, we note that for any combination of the variables x1, and x2  there are only two possible values for f Hx1, x2L, namely 0 or 1.
Thus, we could write 24 = 16 different functions on 2 variables.
Now  let's  count  the  number  of  different  Boolean  functions  in  a  more  general  setting.  We  will  consider  two  cases:  first,  when  B = B2  ,  and
second, when B is any finite Boolean algebra with 2n elements.

Let  B = B2.  Each  function  f : Bk Ø B  is  defined  in  terms  of  a  table  having  2k  rows.  Therefore,  since  there  are  two  possible  images  for  each
element of Bk, there are 2 raised to the 2k, or  22k  different functions.  We claim that every one of these functions is a Boolean function.

Now suppose  that  †B§ = 2n > 2.  A  function  from Bk  into  B  can  still  be  defined  in  terms  of  a  table.  There  are  †B§k  rows  to  each  table  and  †B§
possible images for each row. Therefore, there are 2n  raised to the power 2nk  different functions. If n > 1, then not every one of these functions
is a Boolean function.  Notice that in counting the numbers of functions we are applying the result of  Exercise 5 of Section 7.1. 
Since all Boolean algebras are isomorphic to a Boolean algebra of sets, the analogues of statements in sets are useful in Boolean algebras.

Definition: Minterm. A Boolean expression generated by x1, x2, …, xk that has the form

i=1

k
yi,

where each yi may be either xi or xi is called a minterm generated by x1, x2, …, xk.

By a direct application of the Product Rule we see that there are 2k different minterms generated by x1, …, xk.

Definition:  Minterm  Normal  Form.  A  Boolean  expression  generated  by  x1, …, xk  is  in  minterm  normal  form  if  it  is  the  join  of
expressions of the form a m, where a œ B and m is a minterm generated by x1, …, xk. That is, it is of the form

j=1

p Ia j Ï m jM,
where p = 2k and m1, m2, …, mp are the minterms generated by x1, …, xk
If B = B2, then each a j in a minterm normal form is either 0 or 1. Therefore, a j Ï m j is either 0 or m j.

Theorem 13.6.1.  Let eHx1, …, xkL be a Boolean expression over B. There exists a unique minterm normal form MHx1, …, xkL that is
equivalent to eHx1, …, xkL in the sense that e and M define the same function from Bk into B.
The uniqueness in this  theorem does not  include the possible ordering of the minterms in M  (commonly referred to as "uniqueness up to the
order of minterms"). The proof of this theorem would be quite lengthy, and not very instructive, so we will leave it to the interested reader to
attempt. The implications of the theorem are very interesting, however.

If  †B§ = 2n,  then  there  are  2n  raised  to  the  2k  different  minterm normal  forms.  Since  each  different  minterm normal  form  defines  a  different
function, there are a like number of Boolean functions from Bk  into B.  If  B = B2,  there are as many Boolean functions (2 raised to the 2k) as
there are functions from Bk  into B, since there are 2 raised to the 2n functions from Bk  into B.  The significance of this result is that any desired
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function can be obtained using electronic circuits having 0 or 1 (off or on, positive or negative) values, but more complex, multivalued circuits
would not have this flexibility.
We  will  close  this  section  by  examining  minterm  normal  forms  for  expressions  over  B2  ,  since  they  are  a  starting  point  for  circuit
economization.
Example 13.6.2. Consider the Boolean expression f Hx1, x2L = x1 x2. One method of determining the minterm normal form of f is to think
in terms of sets. Consider the diagram with the usual translation of notation in Figure 13.6.1. Then f Hx1, x2L = Hx1 x2L Í Hx1 x2L Í Hx1 x2L.

x1 x2 x1 x2x1 x2 x1 x2

x2x1

Figure 13.6.1

Example 13.6.3. Consider the function f : B23 Ø B2  defined by Table 13.6.3. The minterm normal form for f can be obtained by taking the
join of minterms that correspond to rows that have an image value of 1. If f Ha1, a2, a3L = 1, then include the minterm y1 Ï y2 Ï y3 where

y j =
x j if a j = 1

x j
—

if a j = 0

TABLE 13.6.3
Boolean Function of f Ha1, a2, a3L Of Example 13.6.3

a1 a2 a3 f Ha1, a2, a3L
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 0 1

1
0
0
1
0
0
1
0

Therefore,

f Hx1, x2, x3L = Hx1 x2 x3L Í Hx1 x2 x3L Í Hx1 x2 x3L.
The minterm normal form is a first  step in obtaining an economical way of expressing a given Boolean function. For functions of more than
three variables, the above set theory approach tends to be awkward. Other procedures are used to write the normal form. The most convenient is
the Karnaugh map, a discussion of which can be found in any logical design/switching theory text (see, for example, Hill and Peterson).
EXERCISES FOR SECTION 13.6
A Exercises

1.  (a) Write the 16 possible functions of Example 13.6.1. (Hint: Find all possible joins of minterms generated by x1 and x2 .)

(b)  Write out the tables of several of the above Boolean functions to show that they are indeed different.

(c)  Determine the minterm normal form of

f1Hx1, x2L = x1 x2,

f2Hx1, x2L = x1 x2
f3Hx1, x2L = 0, f4Hx1, x2L = 1.

2.  Consider the Boolean expression f Hx1, x2, x3L = Hx3 x2L Hx1 x3L Hx2 x3L on @B2; -, Í , ÏD.
(a)  Simplify this expression using basic Boolean algebra laws.
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(b)  Write this expression in minterm normal form.

(c)  Write out the table for the given function defined by f and compare it to the tables of the functions in parts a and b.

(d)  How many possible different functions in three variables on @B2; -, Í , ÏD are there?

B Exercise

3.  Let @B; -, Í , ÏD be a Boolean algebra of order 4, and let f be a Boolean function of two variables on B.

(a)  How many elements are there in the domain of f ?

(b)  How many different Boolean functions are there of two, variables? Three variables?

(c)  Determine the minterm normal form of f Hx1, x2L = x1 x2.

(d)  If B = 80, a, b, 1<, define a function from B2 into B that is not a Boolean function.

13.7 A Brief Introduction to the Application of Boolean Algebra to Switching Theory
The algebra of switching theory is Boolean algebra. The standard notation used for Boolean algebra operations in most logic design/switching 
theory texts is + for  and  for . Complementation is as in this text. Therefore, Hx1 x2L Í Hx1 x2L Í Hx1 x2L becomes 
x1 x2 + x1 x2 + x1 x2, or simply x1 x2 + x1 x2 + x1 x2 . All concepts developed previously for Boolean algebras hold. The only change is 
purely notational. We make the change in this section solely to introduce the reader to another frequently used notation. Obviously, we could 
have continued the discussion with our previous notation.
The simplest switching device is the on-off switch. If the switch is closed, on, current will pass through it; if it is open, off, current will not pass
through it. If we designate on by true or the logical, or Boolean, 1, and off by false, the logical, or Boolean, 0, we can describe electrical circuits
containing  switches  by  logical,  or  Boolean,   expressions.  The  expression  x1 x2  represents  the  situation  in  which  a  series  of  two  switches
appears in a circuit (see Figure 13.7. 1a). In order for current to flow through the circuit, both switches must be on, that is, have the value 1.

Similarly, a pair of parallel switches, as in Figure 13.7.1b, is described algebraically by x1 + x2. Many of the concepts in Boolean algebra can
be  thought  of  in  terms  of  switching  theory.  For  example,  the  distributive  law  in  Boolean  algebra  (in  +,  notation)  is:x1 Hx2 + x3L  =
x1 x2 + x1 x3.  Of course, this says the expression on the left is always equivalent to that on the right. The switching circuit analogue of the
above statement is that Figure 13.7.2a is equivalent (as an electrical circuit) to Figure 13.7.2b.
The circuits in a digital computer are composed of large quantities of switches that can be represented as in Figure 13.7.2 or can be thought of
as boxes or gates with two or more inputs (except for the NOT gate) and one output. These are often drawn as in Figure 13.7.3. For example,
the OR gate, as the name implies, is the  logical/Boolean OR function. The on-off switch function in Figure 13.7.3a in gate notation is Figure
13.7.3b.
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Either diagram indicates that the circuit will conduct current if and only if f Hx1, x2, x3L is true, or 1. We list the gate symbols that are widely
used in switching theory in Figure 13.7.4 with their names. The names mean, and are read, exactly as they appear. For example, NAND means
"not x1 and x2" or algebraically, x1 x2, or x1 x2.
The  circuit  in  Figure  13.7.5a  can  be  described  by  gates.  To  do  so,  simply  keep  in  mind  that  the  Boolean  function  f Hx1, x2L = x1 x2  of  this
circuit contains two operations. The operation of complementation takes precedence over that of "and," so we have Figure 13.7.5b.
Example 13.7.1. The switching circuit in Figure 13.7.6a can be expressed through the logic, or gate, circuit in Figure 13.7.6b.
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We leave  it  to  the  reader  to  analyze  both  figures  and  to  convince  him-  or  herself  that  they  do  describe  the  same  circuit.  The  circuit  can  be
described algebraically as

f Hx1, x2, x3L = HH x1 + x2L + Hx1 + x3LL x1 x2.

We can use basic Boolean algebra laws to simplify or minimize this Boolean function (circuit):

f Hx1, x2, x3L = HHx1 + x2L + Hx1 + x3LL x1 x2  

= Hx1 + x2 + x3L x1 x2
= Hx1 x1 x2 + x2 x1 x2 + x3 x1 x2

 

= x1 x2 + 0 x1 + x3 x1 x2
= x1 x2 + x3 x1 x2
= x1 Hx2 + x2 x3L
= x1 x2 H1 + x3L
= x1 x2 .

The circuit for f may be described as in Figure 13.7.5. This is a less expensive circuit since it involves considerably less hardware.
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The table for f is:

x1 x2 x3 f Hx1, x2, x3L
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0
0
0
0
1
1
0
0

The Venn diagram that represents f is the shaded portion in Figure 13.7.7. From this diagram, we can read off the minterm normal form of f:

f Hx1, x2, x3L = x1 x2 x3 + x1 x2 x3.
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x2

x3

x1

Figure 13.7.7

The circuit (gate) diagram appears in Figure 13.7.8.

How  do  we  interpret  this?  We  see  that  f Hx1, x2, x3L = 1  when  x1 = 1, x2 = 0,  and  x3 = 0  or  x3 = 1.  Current  will  be  conducted  through  the
circuit when switch x1 is on, switch x2 is off, and when switch x3 is either off or on.

We close  this  section with  a  brief  discussion of  minimization,  or  reduction,  techniques.  We have discussed two in  this  text:  algebraic  (using
basic  Boolean rules)  reduction  and the  minterm normal  form technique.  Other  techniques  are  discussed  in  switching theory  texts.  When one
reduces a given Boolean function, or circuit, it is possible to obtain a circuit that does not look simpler, but may be more cost effective, and is,
therefore, simpler with respect to time. We illustrate with an example.

Example 13.7.2. Consider the Boolean function of Figure 13.7.9a is f Hx1, x2, x3, x4L = IIx1 x2L x3L x4, which can also be diagrammed
as in Figure 13.7.9b.
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Is Circuit b simpler than Circuit a? Both circuits contain the same number of gates, so the hardware costs (costs per gate) would be the same.
Hence, intuitively, we would guess that they are equivalent with respect to simplicity. However, the signals x3  and x4  in Circuit a pass through
three levels of gating before reaching the output. All signals in Circuit b go through only two levels of gating (disregard the NOT gate when
counting levels). Each level of logic (gates) adds to the time delay of the development of a signal at the output. In computers, we want the time
delay to be as small as possible. Frequently, speed can be increased by decreasing the number of levels in a circuit. However, this frequently
forces a larger number of gates to be used, thus increasing costs. One of the more difficult jobs of a design engineer is to balance off speed with
hardware costs (number of gates).
One final remark on notation: The circuit in Figure 13.7.10a can be written as in Figure 13.7.10b, or simply as in Figure 13.7.10c.

EXERCISES FOR SECTION 13.7
A Exercises

1. (a) Write all inputs and outputs from Figure 13.7.11 and show that its Boolean function is f Hx1, x2, x3L = HHx1 + x2L x3L Hx1 + x2L.
(b)   Simplify f  algebraically.

(c)   Find the minterm normal form of f.

(d)   Draw and compare the circuit (gate) diagram of parts b and c above.

(e)   Draw the on-off switching diagram of f in part a. 
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(f) Write the table of the Boolean function f in part a and interpret the results.

2. Given Figure 13.7.12:

(a)   Write the Boolean function that represents the given on-off circuit.

(b)     Show that  the  Boolean  function  obtained  in  answer  to  part  a  can  be  reduced  to  f Hx1, x2L = x1.  Draw the  on-off  circuit  diagram of  this
simplified representation.
(c)   Draw the circuit (gate) diagram of the given on-off circuit diagram.

(d)   Determine the minterm normal of the Boolean function found in the answer to part a or given in part b; they are equivalent.

(e)  Discuss the relative simplicity and advantages of the circuit gate diagrams found in answer to parts c and d.

3.  (a) Write the circuit (gate) diagram of

f Hx1, x2, x3L = Hx1 x2 + x3L Hx2 + x3L + x3.

(b)   Simplify the function in part a by using basic Boolean algebra laws.

(c)  Write the circuit (gate) diagram of the result obtained in part b.

(d)  Draw the on-off switch diagrams of parts a and b.

4.  Consider the Boolean function

f Hx1, x2, x3, x4L = x1 + Hx2 Hx1 + x4L + x3 Hx2 + x4LL.
(a)  Simplify f algebraically.

(b)  Draw the switching (on-off) circuit of f and the reduction of f obtained in part a.

(c)  Draw the circuit (gate) diagram of f and the reduction of f obtained in answer to part a.
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SUPPLEMENTARY EXERCISES FOR CHAPTER 13
Section 13.1
1.  (a) Draw the Hasse diagram of the relation divides on the set A = 81, 2, 3, …, 12<.
(b) For the same set A draw the Hasse diagram for the relation § on A.

2.   (a) For the poset A = 81, 2, 3, …, 12< under the relation divides find the lub and glb of the following pairs of numbers if possible: 4 and 6,
2 and 3, 10 and 4, 6 and 9.
 (b) Repeat part a for the set A, but use the relation  §.

Section 13.2
3.   Consider the poset P under the relation "divides."

(a)  Compute: 4 Í 8, 3 Í 15, 3 Í 5, 4 Ï 8, 3 Ï 15, 3 Ï 5 for @P, Í , ÏD.
(b)   Is @P, Í , ÏD a distributive lattice? Explain.

(c)  Does @P, Í , ÏD have a least element? Does it have a greatest element? If so, what are they?

4. Let @L, \ê . ÏD be a lattice and a, b œ L. Prove:

(a)   a Í b = b if and only if a § b.

(b)   a Ï b = a if and only if a § b.

5. Let L = 80, 1< and define § on L by 0 § 0 § 1 § 1.

(a)   Draw the Hasse diagram of this poset.

(b)   Write out the operation table for   and  on L observing that they are essentially the standard logical connectives.

(c)   Define the operations on L2 componentwise and draw the Hasse diagram for L2 .

(d)   Repeat part (c) for L3.

6. (a) Let @L1, Í , ÏD and @L2, Í , ÏD be lattices. Prove that @L1µL2, Í , ÏD is a lattice when the operations are defined componentwise as
we did for algebraic systems in Section 11.6. 

(b) Let L1 and L2 be lattices whose posets have the following Hasse diagrams respectively. List the elements in the lattice L1µL2.

(c) Compute:

 H0, aL Í H0, bL
H0, aL Ï H0, bL 
H1, aL Í H1, bL
 H1, aL Ï H1, bL
H0, 1L Í H1, 0L 

      and H0, 1L Ï H1, 0L. 
  Use this information as an aid to draw the Hasse diagram for L1µL2.

7. (a) Is A = 81, 2, 3, …, 12< a lattice under the relation “divides”?  Explain.

    (b) Is the set A above a lattice under the relation “less than or equal to”?  Explain.

Section 13.3
8.   Using the rules of Boolean algebra, reduce the expression Hx1 x2L Í Hx1 x2L Í Hx1 x2L to the equivalent expression x1 x2.  Justify each
step.
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9.   Using the rules of Boolean algebra, reduce the expression Hx + yL ÿ Hx + yL to a simpler expression.

10.  Even  a  cursory  examination  of  the  basic  laws  for  Boolean  algebra  (Table  13.3.1),  for  logic  (Table  3.4.1),  and  for  sets  (Section  4.2)  will
indicate that they are the same in three different languages: they are isomorphic to one another as Boolean algebras.
(a) Fill out the following table to illustrate the above concept:

 

comparable
connectives

Sets
Logic

Boolean Algebraa

‹
Ï Ÿ

§

(b)  Since  the  above  algebras  are  isomorphic  as  Boolean  algebras,  any  theorem  true  in  one  is  true  in  the  other  two.  Translate  each  of  the
following statements into the language of the other two.

(i) p Ø q if and only if   Ÿ q Ø Ÿ p.

(ii) If A Œ B and A Œ C then A Œ B › C

(iii) If a ¥ b and a ¥ c then a ¥ b \ê c.

11. (a) Determine the complements of each element described by the following Hasse diagram:

(b) Is the above lattice a Boolean algebra?

12.   (a) Determine the complement of each element in the lattice D50. 

        (b) Is D50 a Boolean algebra? Explain.

Section 13.4
13.   (a) Use the Theorem 13.4.2 and its Corollaries to determine which ofthe following are Boolean algebras:

(a) D20   (b)  D27   (c) D35    (d)  D210

(b) Notice that Dn is a Boolean algebra if and only if n is a product of distinct primes. Such an integer is called square free. What are the atoms
of Dn if n is square free?
14.   Let @B, -, . D be any Boolean algebra of order 8. Find a Boolean algebra of sets that is isomorphic to B.  How many atoms must B
have?

Section 13.5
15.   (a) List all sub-Boolean algebras of order 4 in B23

(b)  How many sub-Boolean algebras of order 4 are there in B2n , n ¥ 4?

(c)  Discuss how the selection of atoms in a sub-Boolean algebra can be used to answer questions such as the one in part (b).

16.  Prove that Boolean algebras  B2mµB2n and  B2m+n are isomorphic.

Section 13.6
17  Find the minterm normal form of the Boolean expression  Hx1 x2L Ï x3
18. Find the rninterm normal form of the Boolean expression

 x4 Hx3 x2 x1L x3 Hx2 x1L x2 x1

19.  Let B be a Boolean algebra of order 2.

(a) How many rows are there in the table of a Boolean function of 3 variables? Of n variables?
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(b) How many different Boolean functions of 3 variables and of n variables are there?

20. Let B be a Boolean algebra of order 2.

(a) How many different minterm normal forms are there for Boolean expressions of 2 variables over B?   List them.

(b) How many different minterm normal forms are there for Boolean expressions of 3 variables over B?

Section 13.7
21. Consider the following Boolean expression:

 f Hx1, x2, x3L = HHx1 + x2 + x3L ÿ x1 + x1 + x2L ÿ x1 ÿ x3
(a) Draw the switching circuit of f.

(b) Draw the gate diagram of f.

(c) Simplify f algebraically and draw the switching circuit and gate diagrams of this simplified version of f.

22. Assume that each of the three members of a committee votes yes or no on a proposal by pressing a button that closes a switch for yes and
doesn nothing for no.  Devise as simple a switching-circuit as you can that will  allow current to pass when and only when at least two of the
members vote in the affirmative.
23. (a) Find the Boolean function of this network:

(b)  Draw an equivalent 

24.   Given the switching  circuit

(a)   Express the the switching circuit algebraically.

(b)   Draw the gate diagram of the expression obtained in part a.

(c)   Simplify the expression in part a and draw the switching-circuit and gate diagram for the simplified expression.

S13.nb | 3

Applied Discrete Structures by A. Doerr & K. Levasseur is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0
  


