
Inheritance and Interfaces    2.1

INHERITANCE AND INTERFACES

2.1 Inheritance
Inheritance is the mechanism in java by which one class is allow to inherit the features

(fields and methods) of another class. It is process of deriving a new class from an existing
class. A class that is inherited is called a superclass and the class that does the inheriting is
called a subclass. Inheritance represents the IS-A relationship, also known as parent-child re-
lationship. The keyword used for inheritance is extends.

Syntax:	
		 class Subclass-name extends Superclass-name

		 {

 		 //methods and fields

		 }

Here, the extends keyword indicates that we are creating a new class that derives from an
existing class.

Note: The constructors of the superclass are never inherited by the subclass

Advantages of Inheritance:
Code reusability - public methods of base class can be reused in derived classes•	

Data hiding – private data of base class cannot be altered by derived class•	

Overriding--With inheritance, we will be able to override the methods of the base •	
class in the derived class

Example:
// Create a superclass.

class BaseClass{

 int a=10,b=20;

 public void add(){

 System.out.println(“Sum:”+(a+b));

UNIT -2

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 1

SVCET

 }

}

// Create a subclass by extending class BaseClass.

public class Main extends BaseClass

{

 public void sub(){

 System.out.println(“Difference:”+(a-b));

 }

	 public static void main(String[] args) {

	 Main obj=new Main();

/*The subclass has access to all public members of its superclass*/

 	 obj.add();

	 obj.sub();

	 }

}

Sample Output:
Sum:30

Difference:-10

In this example, Main is the subclass and BaseClass is the superclass. Main object can
access the field of own class as well as of BaseClass class i.e. code reusability.

Types of inheritance
Single Inheritance :

In single inheritance, a subclass inherit the features of one superclass.

Example:
class Shape{

 int a=10,b=20;

}

class Rectangle extends Shape{

 public void rectArea(){

 System.out.println(“Rectangle Area:”+(a*b));

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 2

SVCET

 }

}

public class Main

{

	 public static void main(String[] args) {

	 Rectangle obj=new Rectangle();

		 obj.rectArea();

	 }

}

Multilevel Inheritance:
In Multilevel Inheritance, a derived class will be inheriting a base class and as well as the

derived class also act as the base class to other class i.e. a derived class in turn acts as a base
class for another class.

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 3

SVCET

Example:
class Numbers{

 int a=10,b=20;

}

class Add2 extends Numbers{

 int c=30;

 public void sum2(){

 System.out.println(“Sum of 2 nos.:”+(a+b));

 }

}

class Add3 extends Add2{

 public void sum3(){

 System.out.println(“Sum of 3 nos.:”+(a+b+c));

 }

}

public class Main

{

	 public static void main(String[] args) {

	 Add3 obj=new Add3();

		 obj.sum2();

		 obj.sum3();

	 }

}

Sample Output:
Sum of 2 nos.:30

Sum of 3 nos.:60

Hierarchical Inheritance:

In Hierarchical Inheritance, one class serves as a superclass (base class) for more than
one sub class.

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 4

SVCET

Example:
class Shape{

 int a=10,b=20;

}

class Rectangle extends Shape{

 public void rectArea(){

 System.out.println(“Rectangle Area:”+(a*b));

 }

}

class Triangle extends Shape{

 public void triArea(){

 System.out.println(“Triangle Area:”+(0.5*a*b));

 }

}

public class Main

{

	 public static void main(String[] args) {

	 Rectangle obj=new Rectangle();

		 obj.rectArea();

	 Triangle obj1=new Triangle();

		 obj1.triArea();		

	 }

}

Sample Output:
Rectangle Area:200

Triangle Area:100.0

Multiple inheritance
Java does not allow multiple inheritance:

To reduce the complexity and simplify the language•	

To avoid the ambiguity caused by multiple inheritance•	

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 5

SVCET

For example, Consider a class C derived from two base classes A and B. Class C inherits
A and B features. If A and B have a method with same signature, there will be ambiguity to
call method of A or B class. It will result in compile time error.

class A{

void msg(){System.out.println(“Class A”);}

}

class B{

void msg(){System.out.println(“Class B “);}

}

class C extends A,B{//suppose if it were

 Public Static void main(String args[]){

 C obj=new C();

 obj.msg();//Now which msg() method would be invoked?

}

}

Sample Output:		
		 Compile time error

Direct implementation of multiple inheritance is not allowed in Java. But it is achievable
using Interfaces. The concept about interface is discussed in chapter.2.7.

Access Control in Inheritance
The following rules for inherited methods are enforced −

Variables declared public or protected in a superclass are inheritable in subclasses.•	

Variables or Methods declared private in a superclass are not inherited at all.•	

Methods declared public in a superclass also must be public in all subclasses.•	

Methods declared protected in a superclass must either be protected or public in •	
subclasses; they cannot be private.

Example:
// Create a superclass

class A{

 int x;		 // default specifier

 private int y;	 // private to A

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 6

SVCET

 public void set_xy(int a,int b){

 x=a;

 y=b;

 }

}

// A’s y is not accessible here.

class B extends A{

 public void add(){

 System.out.println(“Sum:”+(x+y)); //Error: y has private access in A – not inheritable

 }

}

class Main{

 public static void main(String args[]){

 B obj=new B();

 obj.set_xy(10,20);

 obj.add();

 }

}

In this example since y is declared as private, it is only accessible by its own class mem-
bers. Subclasses have no access to it.

2.2 Using Super
The super keyword refers to immediate parent class object. Whenever you create the in-

stance of subclass, an instance of parent class is created implicitly which is referred by super
reference variable.

It an be used to refer immediate parent class instance variable when both parent and •	
child class have member with same name

It can be used to invoke immediate parent class method when child class has overridden •	
that method.

super() can be used to invoke immediate parent class constructor.•	

Use of super with variables:
When both parent and child class have member with same name, we can use super key-

word to access mamber of parent class.

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 7

SVCET

Example:
class SuperCls

{

 int x = 20;

}

 /* sub class SubCls extending SuperCls */

class SubCls extends SuperCls

{

 int x = 80;

 void display()

 {

 System.out.println(“Super Class x: “ + super.x); //print x of super class

 System.out.println(“Sub Class x: “ + x); //print x of subclass

 }

}

 /* Driver program to test */

class Main

{

 public static void main(String[] args)

 {

 SubCls obj = new SubCls();

 obj.display();

 }

}

Sample Output:
Super Class x: 20

Sub Class x: 80

In the above example, both base class and subclass have a member x. We could access x
of base class in sublcass using super keyword.

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 8

SVCET

Use of super with methods:
The super keyword can also be used to invoke parent class method. It should be used if

subclass contains the same method as parent class (Method Overriding).

class SuperCls
{
 int x = 20;
 void display(){	 //display() in super class
 System.out.println(“Super Class x: “ + x);
 }
}
 /* sub class SubCls extending SuperCls */
class SubCls extends SuperCls
{
 int x = 80;
 void display()	 //display() redefined in sub class – method overriding
 {
 System.out.println(“Sub Class x: “ + x);
 super.display();	 // invoke super class display()
 }
}
 /* Driver program to test */
class Main
{
 public static void main(String[] args)
 {
 SubCls obj = new SubCls();
 obj.display();
 }
}

Sample Output:
Sub Class x: 80

Super Class x: 20

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 9

SVCET

In the above example, if we only call method display() then, the display() of sub class gets
invoked. But with the use of super keyword, display() of superclass could also be invoked.

Use of super with constructors:
The super keyword can also be used to invoke the parent class constructor.

Syntax:

		 super();

super() if present, must always be the first statement executed inside a subclass •	
constructor.

When we invoke a super() statement from within a subclass constructor, we are •	
invoking the immediate super class constructor

Example:
class SuperCls

{

 SuperCls(){

 System.out.println(“In Super Constructor”);

 }

}

 /* sub class SubCls extending SuperCls */

class SubCls extends SuperCls

{

 SubCls(){

 super();

 System.out.println(“In Sub Constructor”);

 }

}

 /* Driver program to test */

class Main

{

 public static void main(String[] args)

 {

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 10

SVCET

 SubCls obj = new SubCls();

 }

}

Sample Output:
In Super Constructor

In Sub Constructor

2.3 Order of Constructor Invocation
Constructors are invoked in the order of their derivation•	

If a subclass constructor does not explicitly invoke a superclass constructor using •	
super() in the first line, the Java compiler automatically inserts a call to the no-
argument constructor of the superclass. If the superclass does not have a no-argument
constructor, it will generate a compile-time error.

Example:
class A

{

 A(){

 System.out.println(“A’s Constructor”);

 }

}

 /* sub class B extending A */

class B extends A

{

 B(){

 super();

 System.out.println(“B’s Constructor”);

 }

}

/* sub class C extending B */

class C extends B{

 C(){

 super();

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 11

SVCET

 System.out.println(“C’s Constructor”);

 }

}

 /* Driver program to test */

class Main

{

 public static void main(String[] args)

 {

 C obj = new C();

 }

}

Sample Output:
A’s Constructor

B’s Constructor

C’s Constructor

Invoking Superclass Parameterized Constructor
To call parameterized constructor of superclass, we must use the super keyword as shown

below.

Syntax:	

	 super(value);

Example:

class SuperCls{

 int x;

 SuperCls(int x){

 this.x=x;		 // this refers to current invoking object

 }

}

class SubCls extends SuperCls{

 int y;

 SubCls(int x,int y){

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 12

SVCET

 super(x);		 // invoking parameterized constructor of superclass

 this.y=y;

 }

 public void display(){

 System.out.println(“x: “+x+” y: “+y);

 }

}

public class Main

{

	 public static void main(String[] args) {

	 SubCls obj=new SubCls(10,20);

	 obj.display();

	 }

}

Sample Output:
x: 10 y: 20

The program contains a superclass and a subclass, where the superclass contains a param-
eterized constructor which accepts a integer value, and we used the super keyword to invoke
the parameterized constructor of the superclass.

2.4 The Object Class
The Object class is the parent class of all the classes in java by default (directly or indi-

rectly). The java.lang.Object class is the root of the class hierarchy. Some of the Object class
are Boolean, Math, Number, String etc.

 Object

Boolean

Character Number Math String StringBuffer

Byte

Short Integer Long Float Double

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 13

SVCET

Some of the important methods defined in Object class are listed below.

Object class Methods Description
boolean equals(Object) Returns true if two references point to the same object.
String toString() Converts object to String
void notify()

void notifyAll()

void wait()

Used in synchronizing threads

void finalize() Called just before an object is garbage collected

Object clone() Returns a new object that are exactly the same as the current
object

int hashCode() Returns a hash code value for the object.
Example:

public class Test

{

 public static void main(String[] args)

 {

 Test t = new Test();	
 /*hashcode is the unique number generated by JVM*/

 System.out.println(t);

 System.out.println(t.toString());	 // provides String representation of an Object

 System.out.println(t.hashCode());

 t = null; /*calling garbage collector explicitly to dispose system resources, perform

clean-up activities and minimize memory leaks*/

 System.gc();

 System.out.println(“end”);

 }

 protected void finalize()	 // finalize() is called just once on an object

 {

 System.out.println(“finalize method called”);

 }

}

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 14

SVCET

Sample Output:
Test@2a139a55
Test@2a139a55
705927765
end

finalize method called

In the above program, the default toString() method for class Object returns a string con-
sisting of the name of the class Test of which the object is an instance, the at-sign character
`@’, and the unsigned hexadecimal representation of the hash code of the object.

2.5 Abstract Classes And Methods
Abstract class

A class that is declared as abstract is known as abstract class. It can have abstract and
non-abstract methods (method with body). It needs to be extended and its method imple-
mented. It cannot be instantiated.

Syntax:
abstract class classname

{

}

Abstract method
A method that is declared as abstract and does not have implementation is known as ab-

stract method. The method body will be defined by its subclass.

Abstract method can never be final and static. Any class that extends an abstract class
must implement all the abstract methods declared by the super class.

Note:
A normal class (non-abstract class) cannot have abstract methods.

Syntax:
abstract returntype functionname (); //No definition

Syntax for abstract class and method:
modifier abstract class className

{

 //declare fields

 //declare methods

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 15

SVCET

 abstract dataType methodName();

}

modifier class childClass extends className

{

dataType methodName()

{

}

}

Why do we need an abstract class?
Consider a class Animal that has a method sound() and the subclasses of it like Dog Lion,

Horse Cat etc. Since the animal sound differs from one animal to another, there is no point to
implement this method in parent class. This is because every child class must override this
method to give its own implementation details, like Lion class will say “Roar” in this method
and Horse class will say “Neigh”.

So when we know that all the animal child classes will and should override this method,
then there is no point to implement this method in parent class. Thus, making this method
abstract would be the good choice. This makes this method abstract and all the subclasses
to implement this method. We need not give any implementation to this method in parent
class.

Since the Animal class has an abstract method, it must be declared as abstract.

Now each animal must have a sound, by making this method abstract we made it compul-
sory to the child class to give implementation details to this method. This way we ensure that
every animal has a sound.

Rules

Abstract classes are not Interfaces. 1.	

An abstract class may2.	 have concrete (complete) methods.

An abstract class may or may not have an abstract method. But if any class has one or 3.	
more abstract methods, it must be compulsorily labeled abstract.

Abstract classes can have Constructors, Member variables and Normal methods.4.	

Abstract classes are never instantiated.5.	

For design purpose, a class can be declared abstract even if it does not contain any 6.	
abstract methods.

Reference of an abstract class can point to objects of its sub-classes thereby achieving 7.	
run-time polymorphism Ex: Shape obj = new Rectangle();

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 16

SVCET

A class derived from the abstract class must implement all those methods that are 8.	
declared as abstract in the parent class.

If a child does not implement all the abstract methods of abstract parent class, then the 9.	
child class must need to be declared abstract as well.

Example 1
//abstract parent class

abstract class Animal

{

 //abstract method

 public abstract void sound();

}

//Lion class extends Animal class

public class Lion extends Animal

{

 public void sound()

{

	 System.out.println(“Roars”);

 }

 public static void main(String args[])

{

	 Animal obj = new Lion();

	 obj.sound();

 }

}

Output:
Roars

In the above code, Animal is an abstract class and Lion is a concrete class.

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 17

SVCET

Example 2
abstract class Bank

{

abstract int getRateOfInterest();

}

class SBI extends Bank

{

int getRateOfInterest()

{

 return 7;

}

}

class PNB extends Bank

{

int getRateOfInterest()

{

 return 8;

}

}

public class TestBank

{

public static void main(String args[])

{

Bank b=new SBI();//if object is PNB, method of PNB will be invoked

int interest=b.getRateOfInterest();

System.out.println(“Rate of Interest is: “+interest+” %”);

b=new PNB();

System.out.println(“Rate of Interest is: “+b.getRateOfInterest()+” %”);

}

}

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 18

SVCET

Inheritance and Interfaces    2.19

Output:
Rate of Interest is: 7 %

Rate of Interest is: 8 %

Abstract class with concrete (normal) method
Abstract classes can also have normal methods with definitions, along with abstract

methods.

Sample Code:
abstract class A
{
 abstract void callme();
 public void normal()
 {
 System.out.println(“this is a normal (concrete) method.”);
 }
}
public class B extends A
{
 void callme()
 {
 System.out.println(“this is an callme (abstract) method.”);
 }
 public static void main(String[] args)
 {
 B b = new B();
 b.callme();
 b.normal();
 }
}

Output:
this is an callme (abstract) method.

this is a normal (concrete) method.

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 19

SVCET

Observations about abstract classes in Java
An instance of an abstract class cannot be created; But, we can have references 1.	
of abstract class type though.

Sample Code:
abstract class Base

{

 abstract void fun();

}

class Derived extends Base

{

 void fun()

{

System.out.println(“Derived fun() called”);

}

}

public class Main

{

 public static void main(String args[])

{

 // Base b = new Base(); Will lead to error

 // We can have references of Base type.

 Base b = new Derived();

 b.fun();

 }

}

Output:
Derived fun() called

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 20

SVCET

An abstract class can contain constructors in Java. And a constructor of ab-2.	
stract class is called when an instance of a inherited class is created.

Sample Code:
abstract class Base
{
 Base()
 {
 System.out.println(“Within Base Constructor”);
 }
 abstract void fun();
}
class Derived extends Base
{
 Derived()
 {
 System.out.println(“Within Derived Constructor”);
 }
 void fun()
 {
 System.out.println(“ Within Derived fun()”);
 }
}
public class Main
{
 public static void main(String args[])
 {
 Derived d = new Derived();
 }
}

Output:
Within Base Constructor
Within Derived Constructor

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 21

SVCET

We can have an abstract class without any abstract method. This allows us to create 3.	
classes that cannot be instantiated, but can only be inherited.

Sample Code:
abstract class Base

{

 void fun()

 {

 System.out.println(“Within Base fun()”);

 }

}

class Derived extends Base

{

}

public class Main

{

 public static void main(String args[])

 {

 Derived d = new Derived();

 d.fun();

 }

}

Output:
Within Base fun()

Abstract classes can also have final methods (methods that cannot be 4.	
 overridden).

Sample Code:
abstract class Base

{

 final void fun()

 {

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 22

SVCET

 System.out.println(“Within Derived fun()”);

 }

}

class Derived extends Base

{

}

public class Main

{

 public static void main(String args[])

 {

 Base b = new Derived();

 b.fun();

 }

}

Output:
Within Derived fun()

2.6 Final Methods and Classes
The final keyword in java is used to restrict the user. The java final keyword can be ap-

plied to:

variable•	

method•	

class•	

Java final variable - To prevent constant variables
Java final method - To prevent method overriding
Java final class - To prevent inheritance

Figure: Uses of final in java

Java final variable
The final keyword can be applied with the variables, a final variable that have no value

it is called blank final variable or uninitialized final variable. It can be initialized in the con-
structor only. The blank final variable can be static also which will be initialized in the static
block only.

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 23

SVCET

Sample Code:
A final variable speedlimit is defined within a class Vehicle. When we try to change the

value of this variable, we get an error. This is due to the fact that the value of final variable
cannot be changed, once a value is assigned to it.

public class Vehicle

{

 final int speedlimit=60;//final variable

 void run()

 {

 speedlimit=400;

 }

 public static void main(String args[])

 {

 Vehicle obj=new Vehicle();

 obj.run();

 }

}

Output:
/Vehicle.java:6: error: cannot assign a value to final variable speedlimit

 speedlimit=400;

 ^

1 error

Blank final variable
A final variable that is not initialized at the time of declaration is known as blank final

variable. We must initialize the blank final variable in constructor of the class otherwise it will
throw a compilation error.

Sample Code:

public class Vehicle

{

 final int speedlimit; //blank final variable

 void run()

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 24

SVCET

 {

 }

 public static void main(String args[])

 {

 Vehicle obj=new Vehicle();

 obj.run();

 }

}

Output:
/Vehicle.java:3: error: variable speedlimit not initialized in the default constructor

 final int speedlimit; //blank final variable

 ^

1 error

Java Final Method
A Java method with the final keyword is called a final method and it cannot be overridden

in the subclass.

In general, final methods are faster than non-final methods because they are not required
to be resolved during run-time and they are bonded at compile time.

Sample Code:
class XYZ

{

 final void demo()

 {

 System.out.println(“XYZ Class Method”);

 }

}

public class ABC extends XYZ

{

 void demo()

 {

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 25

SVCET

 System.out.println(“ABC Class Method”);

 }

 public static void main(String args[])

 {

 ABC obj= new ABC();

 obj.demo();

 }

}

Output:
/ABC.java:11: error: demo() in ABC cannot override demo() in XYZ

 void demo()

 ^

 overridden method is final

1 error

The following code will run fine as the final method demo() is not overridden. This shows
that final methods are inherited but they cannot be overridden.

Sample Code:

class XYZ

{

 final void demo()

 {

 System.out.println(“XYZ Class Method”);

 }

}

public class ABC extends XYZ

{

 public static void main(String args[])

 {

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 26

SVCET

 ABC obj= new ABC();

 obj.demo();

 }

}

Output:
XYZ Class Method

Points to be remembered while using final methods:
Private methods of the superclass are automatically considered to be final. •	

Since the compiler knows that final methods cannot be overridden by a subclass, so •	
these methods can sometimes provide performance enhancement by removing calls
to final methods and replacing them with the expanded code of their declarations at
each method call location.

Methods made inline should be small and contain only few lines of code. If it grows •	
in size, the execution time benefits become a very costly affair.

A final’s method declaration can never change, so all subclasses use the same method •	
implementation and call to one can be resolved at compile time. This is known
as static binding.

Java Final Class
Final class is a class that cannot be extended i.e. it cannot be inherited. •	

A final class can be a subclass but not a superclass.•	

Declaring a class as final implicitly declares all of its methods as final.•	

It is illegal to declare a class as both abstract and final since an abstract class is incomplete •	
by itself and relies upon its subclasses to provide complete implementations.

Several classes in Java are final e.g. String, Integer, and other wrapper classes.•	

The final keyword can be placed either before or after the access specifier.•	

Syntax:

final public class A

{

 //code

}

OR

public final class A

{

 //code

}

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 27

SVCET

Sample Code:
final class XYZ

{

}

public class ABC extends XYZ

{

 void demo()

 {

 System.out.println(“My Method”);

 }

 public static void main(String args[])

 {

 ABC obj= new ABC();

 obj.demo();

 }

}

Output:
/ABC.java:5: error: cannot inherit from final XYZ

public class ABC extends XYZ

 ^

1 error

Important points on final in Java
Final keyword can be applied to a member variable, local variable, method or •	 class
in Java.

Final member variable must be initialized at the time of declaration or inside the •	
constructor, failure to do so will result in compilation error.

We cannot reassign value to a final variable in Java.•	

The local final variable must be initialized during declaration.•	

A final method cannot be •	 overridden in Java.

A final class cannot be inheritable in Java.•	

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 28

SVCET

Final is a different than finally keyword which is used to •	 Exception handling in
Java.

Final should not be confused with finalize() method which is declared in Object class •	
and called before an object is a garbage collected by JVM.

All variable declared inside Java interface are implicitly final.•	

Final and abstract are two opposite keyword and a final class cannot be •	 abstract in
Java.

Final methods are bonded during compile time also called static binding.•	

Final variables which are not initialized during declaration are called blank final •	
variable and must be initialized in all constructor either explicitly or by calling
this(). Failure to do so compiler will complain as “final variable (name) might not be
initialized”.

Making a class, method or variable final in Java helps to improve performance because •	
JVM gets an opportunity to make assumption and optimization.

2.7 Interfaces
An interface is a reference type in Java. It is similar to class. It is a collection of abstract

methods. Along with abstract methods, an interface may also contain constants, default meth-
ods, static methods, and nested types. Method bodies exist only for default methods and static
methods.

An interface is similar to a class in the following ways:

An interface can contain any number of methods.•	

An interface is written in a file with a .java extension, with the name of the interface •	
matching the name of the file.

The byte code of an interface appears in a .class file.•	

Interfaces appear in packages, and their corresponding bytecode file must be in a •	
directory structure that matches the package name.

Uses of interface:
Since java does not support multiple inheritance in case of class, it can be achieved •	
by using interface.

It is also used to achieve loose coupling.•	

Interfaces are used to implement abstraction. •	

Defining an Interface
An interface is defined much like a class.

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 29

SVCET

Syntax:
accessspecifier interface interfacename

{

return-type method-name1(parameter-list);

return-type method-name2(parameter-list);

type final-varname1 = value;

type final-varname2 = value;

// ...

return-type method-nameN(parameter-list);

type final-varnameN = value;

}

When no access specifier is included, then default access results, and the interface is only
available to other members of the package in which it is declared. When it is declared as pub-
lic, the interface can be used by any other code.

The java file must have the same name as the interface. •	

The methods that are declared have no bodies. They end with a semicolon after the •	
parameter list. They are abstract methods; there can be no default implementation of
any method specified within an interface.

Each class that includes an interface must implement all of the methods. •	

Variables can be declared inside of interface declarations. They are implicitly final •	
and static, meaning they cannot be changed by the implementing class. They must
also be initialized.

All methods and variables are implicitly public.•	

Sample Code:
The following code declares a simple interface Animal that contains two methods called

eat() and travel() that take no parameter.

/* File name : Animal.java */

interface Animal {

 public void eat();

 public void travel();

}

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 30

SVCET

Implementing an Interface
Once an interface has been defined, one or more classes can implement that interface. To

implement an interface, the ‘implements’ clause is included in a class definition and then the
methods defined by the interface are created.

Syntax:
class classname [extends superclass] [implements interface [,interface...]]

{

// class-body

}

Properties of java interface
If a class implements more than one interface, the interfaces are separated with a •	
comma.

If a class implements two interfaces that declare the same method, then the same •	
method will be used by clients of either interface.

The methods that implement an interface must be declared public. •	

The type signature of the implementing method must match exactly the type signature •	
specified in the interface definition.

Rules
A class can implement more than one interface at a time.•	

A class can extend only one class, but can implement many interfaces.•	

An interface can extend another interface, in a similar way as a class can extend •	
another class.

Sample Code 1:
The following code implements an interface Animal shown earlier.

/* File name : MammalInt.java */

public class Mammal implements Animal

{

 public void eat()

{

 System.out.println(“Mammal eats”);

 }

 public void travel()

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 31

SVCET

{

 System.out.println(“Mammal travels”);

 }

 public int noOfLegs()

{

 return 0;

 }

 public static void main(String args[])

{

 Mammal m = new Mammal();

 m.eat();

 m.travel();

 }

}

Output:
Mammal eats

Mammal travels

It is both permissible and common for classes that implement interfaces to define ad-
ditional members of their own. In the above code, Mammal class defines additional method
called noOfLegs().

Sample Code 2:
The following code initially defines an interface ‘Sample’ with two members. This inter-

face is implemented by a class named ‘testClass’.

import java.io.*;

// A simple interface

interface Sample

{

 final String name = “Shree”;

 void display();

}

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 32

SVCET

 // A class that implements interface.

public class testClass implements Sample

{

 public void display()

 {

 System.out.println(“Welcome”);

 }

 public static void main (String[] args)

 {

 testClass t = new testClass();

 t.display();

 System.out.println(name);

 }

}

Output:
Welcome

Shree

Sample Code 3:
In this example, Drawable interface has only one method. Its implementation is provided

by Rectangle and Circle classes.

interface Drawable

{

void draw();

}

class Rectangle implements Drawable

{

public void draw()

{

 System.out.println(“Drawing rectangle”);

}

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 33

SVCET

}

class Circle implements Drawable

{

public void draw()

{

 System.out.println(“Drawing circle”);

}

}

public class TestInterface

{

public static void main(String args[])

{

Drawable d=new Circle();

d.draw();

}

}

Output:

Drawing circle

Nested Interface
An interface can be declared as a member of a class or another interface. Such an inter-

face is called a member interface or a nested interface. A nested interface can be declared as
public, private, or protected.

Sample Code:

interface MyInterfaceA

{

 void display();

 interface MyInterfaceB

 {

 void myMethod();

 }

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 34

SVCET

}

public class NestedInterfaceDemo1 implements MyInterfaceA.MyInterfaceB

{

 public void myMethod()

 {

 System.out.println(“Nested interface method”);

 }

 public static void main(String args[])

 {

 MyInterfaceA.MyInterfaceB obj= new NestedInterfaceDemo1();

 obj.myMethod();

 }

}

Output:
Nested interface method

Differences between classes and interfaces
Both classes and Interfaces are used to create new reference types. A class is a collection

of fields and methods that operate on fields. A class creates reference types and these refer-
ence types are used to create objects. A class has a signature and a body. The syntax of class
declaration is shown below:

class class_Name extends superclass implements interface_1,….interface_n

	 // class signature

	 {

	 //body of class.

	 }

Signature of a class has class’s name and information that tells whether the class has in-
herited another class. The body of a class has fields and methods that operate on those fields.
A Class is created using a keyword class.

When a class is instantiated, each object created contains a copy of fields and methods
with them. The fields and members declared inside a class can be static or nonstatic. Static
members value is constant for each object whereas, the non-static members are initialized by
each object differently according to its requirement.

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 35

SVCET

Members of a class have access specifiers that decide the visibility and accessibility of
the members to the user or to the subclasses. The access specifiers are public, private and pro-
tected. A class can be inherited by another class using the access specifier which will decide
the visibility of members of a superclass (inherited class) in a subclass (inheriting class).

An interface has fully abstract methods (methods with nobody). An interface is syntacti-
cally similar to the class but there is a major difference between class and interface that is a
class can be instantiated, but an interface can never be instantiated.

An interface is used to create the reference types. The importance of an interface in Java
is that, a class can inherit only a single class. To circumvent this restriction, the designers of
Java introduced a concept of interface. An interface declaration is syntactically similar to a
class, but there is no field declaration in interface and the methods inside an interface do not
have any implementation. An interface is declared using a keyword interface.

Aspect for
comparison Class Interface

Basic A class is instantiated to create
objects.

An interface can never be instanti-
ated as the methods are unable to
perform any action on invoking.

Keyword class Interface
Access
specifier

The members of a class can be
private, public or protected.

The members of an interface are
always public.

Methods The methods of a class are defined
to perform a specific action.

The methods in an interface are
purely abstract.

inheritance
A class can implement any num-
ber of interfaces and can extend
only one class.

An interface can extend multiple
interfaces but cannot implement
any interface.

Inheritance
keyword extends implements

Constructor A class can have constructors to
initialize the variables.

An interface can never have a
constructor as there is hardly any
variable to initialize.

Declaration
Syntax

class class_Name

{

//fields

//Methods

}

Interface interface_Name

{

Type var_name=value;

Type method1(parameter-list);

Type method2(parameter-list);

..

}

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 36

SVCET

The following example shows that a class that implements one interface:
public interface interface_example

{

public void method1();

public string method2();

}

public class class_name implements interface_example

{

public void method1()

{

..

}

public string method2()

{

…

}

}

Inheritance between concrete (non-abstract) and abstract classes use extends keyword.
It is possible to extend only one class to another. Java does not support multiple inheri-

tance. However, multilevel inheritance i.e., any number of classes in a ladder is possible. For
example, in the following code class C extends the class B, where the class B extends class
A.

class A {}

class B extends A { }

class C extends B { }

Inheritance between classes (including abstract classes) and interfaces, use implements
keyword.

To support multiple inheritance, it uses interfaces. So after implements keyword, there
can be any number of interfaces. For example, in the following code, class B extends only
one class A and two interfaces I1 and I2.

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 37

SVCET

interface I1 {}

interface I2 {}

class A

class B extends A implements I1, I2

{

}

Inheritance between two interfaces, is possible with the use of extends keyword only.
For example, in the following code, interface I2 extends the interface I1.

interface I1 { }

interface I2 extends I1{ }

2.8 Object cloning
Object cloning refers to creation of exact copy of an object. It creates a new instance of

the class of current object and initializes all its fields with exactly the contents of the corre-
sponding fields of this object. In Java, there is no operator to create copy of an object. Unlike
C++, in Java, if we use assignment operator then it will create a copy of reference variable
and not the object. This can be explained by taking an example. Following program demon-
strates the same.

// Java program to demonstrate that assignment operator creates a new reference to same
object.

import java.io.*;

class sample

{

	 int a;

	 float b;

	 sample()

	 {

		 a = 10;

		 b = 20;

	 }

}

class Mainclass

{

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 38

SVCET

	 public static void main(String[] args)

	 {

		 sample ob1 = new sample();

		 System.out.println(ob1.a + “ “ + ob1.b);

		 sample ob2 = ob1;

		 ob2.a = 100;

		 System.out.println(ob1.a+” “+ob1.b);

		 System.out.println(ob2.a+” “+ob2.b);

	 }

}

Output:

10 20.0

100 20.0

100 20.0

Creating a copy using clone() method
The class whose object’s copy is to be made must have a public clone method in it or in

one of its parent class.

Every class that implements clone() should call super.clone() to obtain the cloned •	
object reference.

The class must also implement java.lang.Cloneable interface whose object clone •	
we want to create otherwise it will throw CloneNotSupportedException when clone
method is called on that class’s object.

Syntax:•	

protected Object clone() throws CloneNotSupportedException•	

import java.util.ArrayList;

class sample1

{

	 int a, b;

}

class sample2 implements Cloneable

{

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 39

SVCET

	 int c;

	 int d;

	 sample1 s = new sample1();

	 public Object clone() throws CloneNotSupportedException

	 {

		 return super.clone();

	 }

}

public class Mainclass

{

	 public static void main(String args[]) throws CloneNotSupportedException

	 {

	 sample2 ob1 = new sample2();

	 ob1.c = 10;

	 ob1.d = 20;

	 ob1.s.a = 30;

	 ob1.s.b = 40;

	 sample2 ob2 = (sample2)ob1.clone();

	 ob2.d = 100; //Change in primitive type of ob2 will not be reflected in ob1 field

	 ob2.s.a = 300; //Change in object type field will be reflected in both ob2 and
ob1(shallow copy)

	 System.out.println(ob1.c + “ “ + ob1.d + “ “ +ob1.s.a + “ “ + ob1.s.b);

	 System.out.println(ob2.c + “ “ + ob2.d + “ “ +ob2.s.a + “ “ + ob2.s.b);

	 }

}

Types of Object cloning
 Deep Copy 1.	

Shallow Copy2.	

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 40

SVCET

Shallow copy
Shallow copy is method of copying an object. It is the default in cloning. In this method

the fields of an old object ob1 are copied to the new object ob2. While copying the object type
field the reference is copied to ob2 i.e. object ob2 will point to same location as pointed out
by ob1. If the field value is a primitive type it copies the value of the primitive type. So, any
changes made in referenced objects will be reflected in other object.

Note:

Shallow copies are cheap and simple to make.

Deep Copy

To create a deep copy of object ob1 and place it in a new object ob2 then new copy of any
referenced objects fields are created and these references are placed in object ob2. This means any
changes made in referenced object fields in object ob1 or ob2 will be reflected only in that object
and not in the other. A deep copy copies all fields, and makes copies of dynamically allocated
memory pointed to by the fields. A deep copy occurs when an object is copied along with the
objects to which it refers.

//Java program for deep copy using clone()

import java.util.ArrayList;

class Test

{

	 int a, b;

}

class Test2 implements Cloneable

{

	 int c, d;

	 Test ob1 = new Test();

	 public Object clone() throws CloneNotSupportedException

	 {

		 // Assign the shallow copy to new refernce variable t

		 Test2 t1 = (Test2)super.clone();

		 t1.ob1 = new Test();

		 // Create a new object for the field c

		 // and assign it to shallow copy obtained,

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 41

SVCET

		 // to make it a deep copy

		 return t1;

	 }

}

public class Main

{

	 public static void main(String args[]) throws CloneNotSupportedException

	 {

	 Test2 t2 = new Test2();

	 t2.c = 10;

	 t2.d = 20;

	 t2.ob1.a = 30;

	 t2.ob1.b = 40;

	 Test2 t3 = (Test2)t2.clone();

	 t3.c = 100;

	 t3.ob1.a = 300;

	 System.out.println (t2.c + “ “ + t2.d + “ “ + t2.ob1.a + “ “ + t2.ob1.b);

	 System.out.println (t3.c + “ “ + t3.d + “ “ + t3.ob1.a + “ “ + t3.ob1.b);

	 }

}

Output
10 20 30 40

100 20 300 0

Advantages of clone method:
If we use assignment operator to assign an object reference to another reference •	
variable then it will point to same address location of the old object and no new copy
of the object will be created. Due to this any changes in reference variable will be
reflected in original object.

If we use copy constructor, then we have to copy all of the data over explicitly i.e. •	
we have to reassign all the fields of the class in constructor explicitly. But in clone
method this work of creating a new copy is done by the method itself. So to avoid
extra processing we use object cloning.

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 42

SVCET

2.9 Nested Classes
In Java, a class can have another class as its member. The class written within another

class is called the nested class, and the class that holds the inner class is called the outer
class.

Java inner class is defined inside the body of another class. Java inner class can be de-
clared private, public, protected, or with default access whereas an outer class can have only
public or default access. The syntax of nested class is shown below:

class Outer_Demo {

 class Nested_Demo {

 }

 }

Types of Nested classes
There are two types of nested classes in java. They are non-static and static nested classes.

The non-static nested classes are also known as inner classes.

Non-static nested class (inner class)•	

Member inner class○○

Method Local inner class○○

Anonymous inner class○○

Static nested class•	

Type Description
Member Inner Class A class created within class and outside method.
Anonymous Inner Class A class created for implementing interface or extending class.

Its name is decided by the java compiler.
Method Local Inner Class A class created within method.
Static Nested Class A static class created within class.
Nested Interface An interface created within class or interface.

2.10 Inner Classes (Non-static Nested Classes)
Inner classes can be used as the security mechanism in Java. Normally, a class cannot be

related with the access specifier private. However if a class is defined as a member of other
class, then the inner class can be made private. This class can have access to the private mem-
bers of a class.

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 43

SVCET

2.44    Object Oriented Programming

The three types of inner classes are

Member Inner Class•	

Method-local Inner Class•	

Anonymous Inner Class•	

Member Inner Class
The Member inner class is a class written within another class. Unlike a class, an inner

class can be private and once you declare an inner class private, it cannot be accessed from
an object outside the class.

The following program is an example for member inner class.

 class Outer_class {

 int n=20;

 private class Inner_class {

 public void display() {

 System.out.println(“This is an inner class”);

 System.out.println(“n:”+n);

 }

 }

 void print_inner() {

 Inner_class inn = new Inner_class();

 inn.display();

 }

}

 public class Myclass {

 public static void main(String args[]) {

 Outer_class out= new Outer_class();

 out.print_inner();

 }

}

Output:
This is an inner class

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 44

SVCET

Method-local Inner Class
In Java, a class can be written within a method. Like local variables of the method, the

scope of the inner class is restricted within the method. A method-local inner class can be
instantiated only within the method where the inner class is defined. The following program
shows how to use a method-local inner class. The following program is an example for Meth-
od-local Inner Class

public class Outer_class {

 void Method1() {

 int n = 100;

 class MethodInner_class {

 public void display() {

 System.out.println(“This is method inner class “);

 System.out.println(“n:”+n);	

 }

 }	

 MethodInner_class inn= new MethodInner_class();

 inn.display();

 }

 public static void main(String args[]) {

 Outer_class out = new Outer_class();

 out.Method1();	 	

 }

}

Output:

This is method inner class

n: 100

Anonymous Inner Class
An inner class declared without a class name is known as an anonymous inner class. The

anonymous inner classes can be created and instantiated at the same time. Generally, they are
used whenever you need to override the method of a class or an interface. The syntax of an
anonymous inner class is as follows –

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 45

SVCET

abstract class Anonymous_Inner {

 public abstract void Method1();

}

The following program is an example for anonymous inner class.

public class Outer_class {

 public static void main(String args[]) {

 Anonymous_Inner inn = new Anonymous_Inner() {

 public void Method1() {

 System.out.println(“This is the anonymous inner class”);

 }

 };

 inn.Method1();	

 }

}

Output:

This is the anonymous inner class

Static Nested Class

A static inner class is a nested class which is a static member of the outer class. It can
be accessed without instantiating the outer class, using other static members. Just like static
members, a static nested class does not have access to the instance variables and methods of
the outer class. Instantiating a static nested class is different from instantiating an inner class.
The following program shows how to use a static nested class.

public class Outer_class {

 static class inner_class{

 public void Method1() {

 System.out.println(“This is the nested class”);

 }

 }

 public static void main(String args[]) {

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 46

SVCET

 Outer_class.inner_class obj = new Outer_class.inner_class();	

 obj.Method1();

 }

}

Output:

This is the nested class

Advantage of java inner classes:
There are basically three advantages of inner classes in java. They are as follows:

Nested classes represent a special type of relationship that is it can access all the •	
members of outer class including private.

Nested classes are used to develop more readable and maintainable code because it •	
logically group classes and interfaces in one place only.

It provides code optimization. That is it requires less code to write.•	

2.11 ArrayList
ArrayList is a part of collection framework. It is present in java.util package. It provides

us dynamic arrays in Java. Though, it may be slower than standard arrays but can be helpful
in programs where lots of manipulation in the array is needed.

ArrayList inherits AbstractList class and implements List interface.•	

ArrayList is initialized by a size; however the size can increase if collection grows or •	
shrink if objects are removed from the collection.

Java ArrayList allows us to randomly access the list.•	

ArrayList cannot be used for primitive types, like int, char, etc. •	

ArrayList in Java is much similar to vector in C++.•	

Java ArrayList class
Java ArrayList class extends AbstractList class which implements List interface. The List

interface extends Collection and Iterable interfaces in hierarchical order.

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 47

SVCET

Java ArrayList class uses a dynamic array for storing the elements. It inherits AbstractList
class and implements List interface.

The important points about Java ArrayList class are:

Java ArrayList class can contain duplicate elements.•	

Java ArrayList class maintains insertion order.•	

Java ArrayList class is non synchronized.•	

Java ArrayList allows random access because array works at the index basis.•	

In Java ArrayList class, manipulation is slow because a lot of shifting needs to be •	
occurred if any element is removed from the array list.

ArrayList class declaration

public class ArrayList<E> extends AbstractList<E> implements List<E>, RandomAc-
cess, Cloneable, Serializable

Constructors of Java ArrayList

Constructor Description
ArrayList() It is used to build an empty array list.

ArrayList(Collection c) It is used to build an array list that is initialized with the
elements of the collection c.

ArrayList(int capacity) It is used to build an array list that has the specified initial
capacity.

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 48

SVCET

Methods of Java ArrayList

Method Description

void add(int index, Object
element)

It is used to insert the specified element at the specified
position index in a list.

boolean addAll
(Collection c)

It is used to append all of the elements in the specified
collection to the end of this list, in the order that they are
returned by the specified collection’s iterator.

void clear() It is used to remove all of the elements from this list.
int lastIndexOf(Object o) It is used to return the index in this list of the last occurrence

of the specified element, or -1 if the list does not contain this
element.

Object[] toArray() It is used to return an array containing all of the elements in
this list in the correct order.

Object[] toArray
(Object[] a)

It is used to return an array containing all of the elements in
this list in the correct order.

boolean add(Object o) It is used to append the specified element to the end of a list.
boolean addAll(int index,
Collection c)

It is used to insert all of the elements in the specified
collection into this list, starting at the specified position.

Object clone() It is used to return a shallow copy of an ArrayList.
int indexOf(Object o) It is used to return the index in this list of the first occurrence

of the specified element, or -1 if the List does not contain this
element.

void trimToSize() It is used to trim the capacity of this ArrayList instance to be
the list’s current size.

import java.util.*;

class Arraylist_example{

 public static void main(String args[]){

 ArrayList<String> a1=new ArrayList<String>();

 a1.add(“Bala”);

 a1.add(“Mala”);

 a1.add(“Vijay”);

 ArrayList<String> a2=new ArrayList<String>();

 a2.add(“kala”);

 a2.add(“Banu”);

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 49

SVCET

2.50    Object Oriented Programming

 a1.addAll(a2);

 Iterator itr=a1.iterator();

 while(itr.hasNext()){

 System.out.println(itr.next());

 }

 }

}

2.12 Java String
In general string is a sequence of characters. String is an object that represents a sequence

of characters. The java.lang.String class is used to create string object. In java, string is basi-
cally an object that represents sequence of char values. An array of characters works same as
java string. For example:

Java String class provides a lot of methods to perform operations on string such as com-
pare(), concat(), equals(), split(), length(), replace(), compareTo(), intern(), substring() etc.

The java.lang.String class implements Serializable, Comparable and CharSequence in-
terfaces. The CharSequence interface is used to represent sequence of characters. It is imple-
mented by String, StringBuffer and StringBuilder classes. It means can create string in java
by using these 3 classes.

The string objects can be created using two ways.

By String literal1.	

By new Keyword2.	

String Literal

Java String literal is created by using double quotes. For Example:

String s=”welcome”; 1.	

Each time you create a string literal, the JVM checks the string constant pool first. If the
string already exists in the pool, a reference to the pooled instance is returned. If string doesn’t
exist in the pool, a new string instance is created and placed in the pool. For example:

String s1=”Welcome”;

String s2=”Welcome”;

In the above example only one object will be created. Firstly JVM will not find any string
object with the value “Welcome” in string constant pool, so it will create a new object. After
that it will find the string with the value “Welcome” in the pool, it will not create new object
but will return the reference to the same instance. To make Java more memory efficient (be-
cause no new objects are created if it exists already in string constant pool).

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 50

SVCET

the literal “Welcome” will be placed in the string constant pool. The variable s will refer to
the object in heap (non pool).

The java String is immutable i.e. it cannot be changed. Whenever we change any string,
a new instance is created. For mutable string, you can use StringBuffer and StringBuilder
classes.

The following program explains the creation of strings

public class String_Example{

public static void main(String args[]){

String s1=”java”;

char c[]={‘s’,’t’,’r’,’i’,’n’,’g’};

String s2=new String(c);

String s3=new String(“example”);

System.out.println(s1);

System.out.println(s2);

System.out.println(s3);

}}

Java String class methods
The java.lang.String class provides many useful methods to perform operations on se-

quence of char values.

Method Description
char charAt(int index) returns char value for the particular index
int length() returns string length
static String format(String format,
Object... args)

returns formatted string

static String format(Locale l, String
format, Object... args)

returns formatted string with given locale

String substring(int beginIndex) returns substring for given begin index
String substring(int beginIndex, int
endIndex)

returns substring for given begin index and
end index

boolean contains(CharSequence s) returns true or false after matching the se-
quence of char value

2. by new keyword
String s=new String(“Welcome”);

In such case, JVM will create a new string object in normal (non pool) heap memory and

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 51

SVCET

2.52    Object Oriented Programming

static String join(CharSequence delim-
iter, CharSequence... elements)

returns a joined string

boolean equals(Object another) checks the equality of string with object
boolean isEmpty() checks if string is empty
String concat(String str) concatinates specified string
String replace(char old, char new) replaces all occurrences of specified char

value
String replace(CharSequence old, Char-
Sequence new)

replaces all occurrences of specified CharSe-
quence

static String equalsIgnoreCase(String
another)

compares another string. It doesn’t check
case.

String[] split(String regex) returns splitted string matching regex
String[] split(String regex, int limit) returns splitted string matching regex and

limit
String intern() returns interned string
int indexOf(int ch) returns specified char value index
int indexOf(int ch, int fromIndex) returns specified char value index starting

with given index
int indexOf(String substring) returns specified substring index
int indexOf(String substring, int fro-
mIndex)

returns specified substring index starting
with given index

String toLowerCase() returns string in lowercase.
String toLowerCase(Locale l) returns string in lowercase using specified

locale.
String toUpperCase() returns string in uppercase.
String toUpperCase(Locale l) returns string in uppercase using specified

locale.
String trim() removes beginning and ending spaces of this

string.
static String valueOf(int value) converts given type into string. It is over-

loaded

The following program is an example for String concat function:
class string_method{

 public static void main(String args[]){

 String s=”Java”;

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 52

SVCET

Inheritance and Interfaces    2.53

 s=s.concat(“ Programming”);

 System.out.println(s);

 }

}

Output:
Java Programming

SRI VIDYA COLLEGE OF ENGG & TECH Lecture Notes

CS8392 OBJECT ORIENTED PROGRAMMING 53

SVCET

	Unit 2

