
Recursive Definitions of Functions

Recursive Integer Functions

Intuitively, a recursive function f is one whose output can be defined for a given input by equating
its associated output to an expression that includes the output values of f for inputs of smaller size.
For example, if f takes as input a nonnegative integer n ≥ 0, then recursive f(n) can be defined by
equating it to an expression that includes values f(m1), . . . , f(ma), where a ≥ 1 and m1, . . . ,ma < n.
When this equation is required for computing f(n) for some n, then n is called a recursive case.
However, what if n is already “small”? Say n = 0. Then since there are no smaller numbers than n,
n is called a base case, and f(n) must be defined by equating it to a constant, such as f(0) = 5, or
f(1) = 2, etc..

In what follows we assume that the domain of f is the set of natural numbers N = {0, 1, 2, . . .}. Note
that functions of this kind are often referred to as sequences, since they may also be expressed as
f0, f1, f2, . . ., where fi is shorthand for f(i), i = 0, 1, 2, . . ..

To summarize, when defining a recursive function, there are two cases to consider:

Base Case when the input n has a size that is one of the smallest possible. In this case f(n) is
equated to a constant.

Recursive Case f(n) can be defined by equating it to an expression that uses one or more f -values
on inputs that are smaller than n.

1



Example 1. Consider the following recursive definition. Base Case: f(0) = 1. Recursive Case:
for n ≥ 1, f(n) = 3f(n− 1) + 2. Use this definition to compute f(1), f(2), and f(3).

2



Example 2. One of the most famous recursive definitions is for the Fibonacci sequence f0, f1, f2, . . ..

Base Case f0 = 0, f1 = 1.

Recursive Case (n ≥ 2) fn = fn−1 + fn−2.

Compute the f2, f3, . . . , f10.

3



Example 3. Provide a recursive definition for f(n) = n!.

4



Example 4. Provide a recursive definition for the function f(n) = an, where a > 0 is a real constant.

5



Recursion trees

Given a recursive definition for f(n), suppose we use the definition to compute f(c), for some c ∈
{0, 1, 2, . . .}. Then a recursion tree for f(c) is a tree whose nodes are labeled with each of the
different function calls that must be made in order to compute f(c). In particular, the root node is
labeled with f(c), and the children of the root are labeled with any direct function call f(a) that is
required in order to compute f(c). Finally, a node of the tree is a leaf in case it is labeled with a
base case.

Example 5. Draw the recursion tree for 5!, based on the recursive definition provided in Example
3.

6



Example 6. Draw the recursion tree for Fibonacci number f5.

7



One application of a recursion tree for a recursively defined function f for input n is that the number
of tree nodes equals the number of calls that need to be made to function f in order to compute f(n),
assuming that f(n) is recursively implemented. For example, below a recursive implementation of
the Fibonacci sequence fn.

int fib(int n)

{

if(n <= 1)

return n;

return fib(n-1) + fib(n-2);

}

Example 7. Let Nn equal the number of nodes in the recursion tree for Fibonacci sequence fn.
Show that Nn > fn for all n ≥ 0. Conclude that a recursive implementation of fn, such as fib, will
require a number of function calls that exceeds fn.

8



The Recursion-Induction Connection

Notice how defining a recursive function has similarities with mathematical induction. When proving
P (n) is true for every n ∈ N , we first show it is true for n = 0. Similarly, when defining recursive
function f(n), we define its value at f(0). With mathematical induction we assume P (n) is true
for some n, and use its truth to establish that P (n + 1) is true. Similarly, when defining recursive
function f(n), we assume f(n−1) is defined, and use it to compute f(n). Thus, it’s not surprising that
mathematical induction is the most natural way of proving something to be true about a recursive
function.

Example 8. Consider the recursive definition for f(n), where f(0) = 0, f(1) = 1, and, for n ≥ 2,
f(n) = 2f(n−1)+1. Use math induction to prove that f(n) has the nonrecursive rule f(n) = 2n−1.

9



Exercises

1. Determine f(1), f(2), f(3), and f(4) if f(n) is recursively defined by f(0) = 1 and, for n =
1, 2, . . .

a. f(n) = f(n− 1) + 3

b. f(n) = 2f(n− 1)

c. f(n) = 2f(n−1)

d. f(n) = f(n− 1)2 + 2f(n− 1) + 1

2. Determine T (2), T (3), T (4), and T (5), if T (n) is recursively defined by T (0) = 2, T (1) = 2,
and T (n) = T (n− 1) + 3T (n− 2) + 4.

3. Draw the recursion tree for T (4), where T is the function from the previous exercise. How
many nodes does it have?

4. Provide a recursive definition of the function f(n) = 2n.

5. Draw the recursion tree that would form when computing f(5) using your recursive definition
from the previous exercise. Label each node with the input being computed at that level of
recursion, and next to each node write the output that will be returned for that input.

6. Provide a recursive definition of the function f(n) = 2n+ 1.

7. Provide a recursive definition of the function f(n) = n2.

8. Let fm(n) = mn, where m ≥ 0 is some integer constant. Provide a recursive defintion for fm.

9. Provide a recursive definition of the function f(n) = n3.

10. Let Nn be the sequence defined in Example 7. Use mathematical induction to prove that
Nn > fn for all n ≥ 2.

11. Define f(n) recursively as f(0) = 0, f(1) = 1, and,for n ≥ 2, f(n) = −f(n − 2). Compute
f(2), . . . , f(8). Use mathematical induction to prove that f(n) = sin(πn

2
), for all n ≥ 0.

12. Let T (n) be the function defined in Exercise 2. Use mathematical induction to prove that T (n)
always ends with the digit 2.

10



Exercise Solutions

1. We have

a. f(1) = 4, f(2) = 7, f(3) = 10, and f(4) = 13.

b. f(1) = 2, f(2) = 4, f(3) = 8, and f(4) = 16.

c. f(1) = 2, f(2) = 4, f(3) = 16, and f(4) = 216 = 65536.

d. f(1) = 4, f(2) = 25, f(3) = 676, and f(4) = 458329.

2. We have T (2) = 2 + 3(2) + 4 = 12, T (3) = 12 + 3(2) + 4 = 22, T (4) = 22 + 3(12) + 4 = 62,
T (5) = 62 + 3(22) + 4 = 132.

3. The T (4) recursion tree has 1 node at the root level (level 0), 2 nodes at level 1, 4 nodes at
level 2, and 2 nodes at level 3, for a total of 9 nodes.

where T is the function from the previous exercise. How many nodes does it have?

4. Base Case. f(0) = 0. Recursive Case. f(n) = f(n− 1) + 2.

5. Each node is labeled as n/f(n), where n is the function input at that level of recursion, and
f(n) is the returned value at that level.

5/10

4/8

3/6

2/4

1/2

0/0

6. Base case: f(0) = 1. Recursive Case: f(n) = f(n− 1) + 2.

7. Base case: f(0) = 0. Recursive Case: since

n2 = ((n− 1) + 1)2 = (n− 1)2 + 2(n− 1) + 1 = (n− 1)2 + 2n− 1,

we have f(n) = f(n− 1) + 2n− 1.

8. Base Case. fm(0) = 0. Recursive Case. fm(n) = fm(n− 1) +m.

11



9. Base Case. f(0) = 0. Recursive Case. Since

f(n− 1) = (n− 1)3 = n3 − 3n2 + 3n− 1 = f(n)− 3n2 + 3n− 1,

we have f(n) = f(n− 1) + 3n2 − 3n+ 1.

10. From Example 7 we know that N0 = N1 = 1, and Nn = Nn−1 +Nn−2 + 1 for all n ≥ 2.

Basis Step: n = 2. We have

N2 = N1 +N0 + 1 = 1 + 1 + 1 = 3 > f2 = 1 + 0 = 1.

For n = 3,
N3 = N2 +N1 + 1 = 3 + 1 + 1 = 5 > f3 = 1 + 1 = 2.

Inductive Step: Assume Nn > fn and Nn−1 > fn−1 for some n ≥ 3. Show that Nn+1 > fn+1.

We have
Nn+1 = Nn +Nn−1 + 1 > fn + fn−1 = fn+1,

where the inequality follows from the inductive assumption. Therefore, Nn > fn for all n ≥ 2.

11. f(2) = 0, f(3) = −1, f(4) = 0, f(5) = 1, f(6) = 0, f(7) = −1, f(8) = 0. Basis Step: n = 0.
f(0) = 0 = sin(0π/2). Basis Step: n = 1. f(1) = 1 = sin(1π/2) = sin(π/2). Inductive

Step: Assume f(k) = sin(πk
2

) for all 0 ≤ k ≤ n. Show f(n + 1) = sin(π(n+1)
2

). Do this by
showing that

sin(
π(n+ 1)

2
) = −f((n+ 1)− 2) = −f(n− 1) = − sin(

π(n− 1)

2
),

where the last equality comes from the inductive assumption, since n − 1 < n. Hint: use the
Sum of Angles identity for sin.

12


