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Groups

We begin our study of algebraic structures by investigating sets associated with single operations
that satisfy certain reasonable axioms; that is, we want to define an operation on a set in a way
that will generalize such familiar structures as the integers Z together with the single operation of
addition, or invertible 2× 2 matrices together with the single operation of matrix multiplication.
The integers and the 2× 2 matrices, together with their respective single operations, are examples
of algebraic structures known as groups.

The theory of groups occupies a central position in mathematics. Modern group theory arose
from an attempt to find the roots of a polynomial in terms of its coefficients. Groups now play a
central role in such areas as coding theory, counting, and the study of symmetries; many areas of
biology, chemistry, and physics have benefited from group theory.

1.1 Integer Equivalence Classes and Symmetries

Let us now investigate some mathematical structures that can be viewed as sets with single
operations.

The Integers mod n

The integers mod n have become indispensable in the theory and applications of algebra. In
mathematics they are used in cryptography, coding theory, and the detection of errors in identification
codes.

We have already seen that two integers a and b are equivalent mod n if n divides a− b. The
integers mod n also partition Z into n different equivalence classes; we will denote the set of these
equivalence classes by Zn. Consider the integers modulo 12 and the corresponding partition of the
integers:

[0] = {. . . ,−12, 0, 12, 24, . . .},
[1] = {. . . ,−11, 1, 13, 25, . . .},

...

[11] = {. . . ,−1, 11, 23, 35, . . .}.

When no confusion can arise, we will use 0, 1, . . . , 11 to indicate the equivalence classes [0], [1], . . . , [11]
respectively. We can do arithmetic on Zn. For two integers a and b, define addition modulo n to be
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(a+ b) (mod n); that is, the remainder when a+ b is divided by n. Similarly, multiplication modulo
n is defined as (ab) (mod n), the remainder when ab is divided by n.

Table 1.1. Multiplication table for Z8
· 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7
2 0 2 4 6 0 2 4 6
3 0 3 6 1 4 7 2 5
4 0 4 0 4 0 4 0 4
5 0 5 2 7 4 1 6 3
6 0 6 4 2 0 6 4 2
7 0 7 6 5 4 3 2 1

Example 1. The following examples illustrate integer arithmetic modulo n:

7 + 4 ≡ 1 (mod 5)

3 + 5 ≡ 0 (mod 8)

3 + 4 ≡ 7 (mod 12)

7 · 3 ≡ 1 (mod 5)

3 · 5 ≡ 7 (mod 8)

3 · 4 ≡ 0 (mod 12).

In particular, notice that it is possible that the product of two nonzero numbers modulo n can
be equivalent to 0 modulo n. �

Example 2. Most, but not all, of the usual laws of arithmetic hold for addition and multiplication
in Zn. For instance, it is not necessarily true that there is a multiplicative inverse. Consider the
multiplication table for Z8 in Table 1.1. Notice that 2, 4, and 6 do not have multiplicative inverses;
that is, for n = 2, 4, or 6, there is no integer k such that kn ≡ 1 (mod 8). �

Proposition 1.1 Let Zn be the set of equivalence classes of the integers mod n and a, b, c ∈ Zn.

1. Addition and multiplication are commutative:

a+ b ≡ b+ a (mod n)

ab ≡ ba (mod n).

2. Addition and multiplication are associative:

(a+ b) + c ≡ a+ (b+ c) (mod n)

(ab)c ≡ a(bc) (mod n).

3. There are both an additive and a multiplicative identity:

a+ 0 ≡ a (mod n)

a · 1 ≡ a (mod n).
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4. Multiplication distributes over addition:

a(b+ c) ≡ ab+ ac (mod n).

5. For every integer a there is an additive inverse −a:

a+ (−a) ≡ 0 (mod n).

6. Let a be a nonzero integer. Then gcd(a, n) = 1 if and only if there exists a multiplicative
inverse b for a (mod n); that is, a nonzero integer b such that

ab ≡ 1 (mod n).

Proof. We will prove (1) and (6) and leave the remaining properties to be proven in the exercises.
(1) Addition and multiplication are commutative modulo n since the remainder of a+ b divided

by n is the same as the remainder of b+ a divided by n.
(6) Suppose that gcd(a, n) = 1. Then there exist integers r and s such that ar + ns = 1. Since

ns = 1− ar, ra ≡ 1 (mod n). Letting b be the equivalence class of r, ab ≡ 1 (mod n).
Conversely, suppose that there exists a b such that ab ≡ 1 (mod n). Then n divides ab− 1, so

there is an integer k such that ab− nk = 1. Let d = gcd(a, n). Since d divides ab− nk, d must also
divide 1; hence, d = 1. �

Symmetries

A symmetry of a geometric figure is a rearrangement of the figure preserving the arrangement of
its sides and vertices as well as its distances and angles. A map from the plane to itself preserving
the symmetry of an object is called a rigid motion. For example, if we look at the rectangle in
Figure 1.1, it is easy to see that a rotation of 180◦ or 360◦ returns a rectangle in the plane with
the same orientation as the original rectangle and the same relationship among the vertices. A
reflection of the rectangle across either the vertical axis or the horizontal axis can also be seen to be
a symmetry. However, a 90◦ rotation in either direction cannot be a symmetry unless the rectangle
is a square.

Let us find the symmetries of the equilateral triangle 4ABC. To find a symmetry of 4ABC,
we must first examine the permutations of the vertices A, B, and C and then ask if a permutation
extends to a symmetry of the triangle. Recall that a permutation of a set S is a one-to-one and
onto map π : S → S. The three vertices have 3! = 6 permutations, so the triangle has at most six
symmetries. To see that there are six permutations, observe there are three different possibilities for
the first vertex, and two for the second, and the remaining vertex is determined by the placement of
the first two. So we have 3 · 2 · 1 = 3! = 6 different arrangements. To denote the permutation of the
vertices of an equilateral triangle that sends A to B, B to C, and C to A, we write the array(

A B C
B C A

)
.

Notice that this particular permutation corresponds to the rigid motion of rotating the triangle by
120◦ in a clockwise direction. In fact, every permutation gives rise to a symmetry of the triangle.
All of these symmetries are shown in Figure 1.2.
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Figure 1.1. Rigid motions of a rectangle
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A natural question to ask is what happens if one motion of the triangle 4ABC is followed by
another. Which symmetry is µ1ρ1; that is, what happens when we do the permutation ρ1 and then
the permutation µ1? Remember that we are composing functions here. Although we usually multiply
left to right, we compose functions right to left. We have

(µ1ρ1)(A) = µ1(ρ1(A)) = µ1(B) = C

(µ1ρ1)(B) = µ1(ρ1(B)) = µ1(C) = B

(µ1ρ1)(C) = µ1(ρ1(C)) = µ1(A) = A.

This is the same symmetry as µ2. Suppose we do these motions in the opposite order, ρ1 then µ1. It
is easy to determine that this is the same as the symmetry µ3; hence, ρ1µ1 6= µ1ρ1. A multiplication
table for the symmetries of an equilateral triangle 4ABC is given in Table 1.2.

Notice that in the multiplication table for the symmetries of an equilateral triangle, for every
motion of the triangle α there is another motion α′ such that αα′ = id; that is, for every motion
there is another motion that takes the triangle back to its original orientation.

1.2 Definitions and Examples

The integers mod n and the symmetries of a triangle or a rectangle are both examples of groups. A
binary operation or law of composition on a set G is a function G×G → G that assigns to
each pair (a, b) ∈ G×G a unique element a ◦ b, or ab in G, called the composition of a and b. A
group (G, ◦) is a set G together with a law of composition (a, b) 7→ a ◦ b that satisfies the following
axioms.
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Figure 1.2. Symmetries of a triangle
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• The law of composition is associative. That is,

(a ◦ b) ◦ c = a ◦ (b ◦ c)

for a, b, c ∈ G.

• There exists an element e ∈ G, called the identity element, such that for any element a ∈ G

e ◦ a = a ◦ e = a.

• For each element a ∈ G, there exists an inverse element in G, denoted by a−1, such that

a ◦ a−1 = a−1 ◦ a = e.

A group G with the property that a ◦ b = b ◦ a for all a, b ∈ G is called abelian or commutative.
Groups not satisfying this property are said to be nonabelian or noncommutative.

Example 3. The integers Z = {. . . ,−1, 0, 1, 2, . . .} form a group under the operation of addition.
The binary operation on two integers m,n ∈ Z is just their sum. Since the integers under addition
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Table 1.2. Symmetries of an equilateral triangle
◦ id ρ1 ρ2 µ1 µ2 µ3

id id ρ1 ρ2 µ1 µ2 µ3

ρ1 ρ1 ρ2 id µ3 µ1 µ2

ρ2 ρ2 id ρ1 µ2 µ3 µ1

µ1 µ1 µ2 µ3 id ρ1 ρ2
µ2 µ2 µ3 µ1 ρ2 id ρ1
µ3 µ3 µ1 µ2 ρ1 ρ2 id

already have a well-established notation, we will use the operator + instead of ◦; that is, we shall
write m+ n instead of m ◦ n. The identity is 0, and the inverse of n ∈ Z is written as −n instead of
n−1. Notice that the integers under addition have the additional property that m+ n = n+m and
are therefore an abelian group. �

Most of the time we will write ab instead of a ◦ b; however, if the group already has a natural
operation such as addition in the integers, we will use that operation. That is, if we are adding two
integers, we still write m + n, −n for the inverse, and 0 for the identity as usual. We also write
m− n instead of m+ (−n).

Table 1.3. Cayley table for (Z5,+)
+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

It is often convenient to describe a group in terms of an addition or multiplication table. Such a
table is called a Cayley table.

Example 4. The integers mod n form a group under addition modulo n. Consider Z5, consisting
of the equivalence classes of the integers 0, 1, 2, 3, and 4. We define the group operation on Z5 by
modular addition. We write the binary operation on the group additively; that is, we write m+ n.
The element 0 is the identity of the group and each element in Z5 has an inverse. For instance,
2 + 3 = 3 + 2 = 0. Table 1.3 is a Cayley table for Z5. By Proposition 1.1, Zn = {0, 1, . . . , n− 1} is a
group under the binary operation of addition mod n. �

Example 5. Not every set with a binary operation is a group. For example, if we let modular
multiplication be the binary operation on Zn, then Zn fails to be a group. The element 1 acts as a
group identity since 1 · k = k · 1 = k for any k ∈ Zn; however, a multiplicative inverse for 0 does not
exist since 0 · k = k · 0 = 0 for every k in Zn. Even if we consider the set Zn \ {0}, we still may not
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have a group. For instance, let 2 ∈ Z6. Then 2 has no multiplicative inverse since

0 · 2 = 0 1 · 2 = 2

2 · 2 = 4 3 · 2 = 0

4 · 2 = 2 5 · 2 = 4.

By Proposition 1.1, every nonzero k does have an inverse in Zn if k is relatively prime to n. Denote
the set of all such nonzero elements in Zn by U(n). Then U(n) is a group called the group of
units of Zn. Table 1.4 is a Cayley table for the group U(8). �

Table 1.4. Multiplication table for U(8)
· 1 3 5 7
1 1 3 5 7
3 3 1 7 5
5 5 7 1 3
7 7 5 3 1

Example 6. The symmetries of an equilateral triangle described in Section 1.1 form a nonabelian
group. As we observed, it is not necessarily true that αβ = βα for two symmetries α and β. Using
Table 1.2, which is a Cayley table for this group, we can easily check that the symmetries of an
equilateral triangle are indeed a group. We will denote this group by either S3 or D3, for reasons
that will be explained later. �

Example 7. We use M2(R) to denote the set of all 2× 2 matrices. Let GL2(R) be the subset of
M2(R) consisting of invertible matrices; that is, a matrix

A =

(
a b
c d

)
is in GL2(R) if there exists a matrix A−1 such that AA−1 = A−1A = I, where I is the 2× 2 identity
matrix. For A to have an inverse is equivalent to requiring that the determinant of A be nonzero;
that is, detA = ad− bc 6= 0. The set of invertible matrices forms a group called the general linear
group. The identity of the group is the identity matrix

I =

(
1 0
0 1

)
.

The inverse of A ∈ GL2(R) is

A−1 =
1

ad− bc

(
d −b
−c a

)
.

The product of two invertible matrices is again invertible. Matrix multiplication is associative,
satisfying the other group axiom. For matrices it is not true in general that AB = BA; hence,
GL2(R) is another example of a nonabelian group. �
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Example 8. Let

1 =

(
1 0
0 1

)
I =

(
0 1
−1 0

)
J =

(
0 i
i 0

)
K =

(
i 0
0 −i

)
,

where i2 = −1. Then the relations I2 = J2 = K2 = −1, IJ = K, JK = I, KI = J , JI = −K,
KJ = −I, and IK = −J hold. The set Q8 = {±1,±I,±J,±K} is a group called the quaternion
group. Notice that Q8 is noncommutative. �

Example 9. Let C∗ be the set of nonzero complex numbers. Under the operation of multiplication
C∗ forms a group. The identity is 1. If z = a+ bi is a nonzero complex number, then

z−1 =
a− bi
a2 + b2

is the inverse of z. It is easy to see that the remaining group axioms hold. �

A group is finite, or has finite order, if it contains a finite number of elements; otherwise, the
group is said to be infinite or to have infinite order. The order of a finite group is the number
of elements that it contains. If G is a group containing n elements, we write |G| = n. The group Z5

is a finite group of order 5; the integers Z form an infinite group under addition, and we sometimes
write |Z| =∞.

Basic Properties of Groups

Proposition 1.2 The identity element in a group G is unique; that is, there exists only one element
e ∈ G such that eg = ge = g for all g ∈ G.

Proof. Suppose that e and e′ are both identities in G. Then eg = ge = g and e′g = ge′ = g for all
g ∈ G. We need to show that e = e′. If we think of e as the identity, then ee′ = e′; but if e′ is the
identity, then ee′ = e. Combining these two equations, we have e = ee′ = e′. �

Inverses in a group are also unique. If g′ and g′′ are both inverses of an element g in a group G,
then gg′ = g′g = e and gg′′ = g′′g = e. We want to show that g′ = g′′, but g′ = g′e = g′(gg′′) =
(g′g)g′′ = eg′′ = g′′. We summarize this fact in the following proposition.

Proposition 1.3 If g is any element in a group G, then the inverse of g, g−1, is unique.

Proposition 1.4 Let G be a group. If a, b ∈ G, then (ab)−1 = b−1a−1.

Proof. Let a, b ∈ G. Then abb−1a−1 = aea−1 = aa−1 = e. Similarly, b−1a−1ab = e. But by the
previous proposition, inverses are unique; hence, (ab)−1 = b−1a−1. �

Proposition 1.5 Let G be a group. For any a ∈ G, (a−1)−1 = a.
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Proof. Observe that a−1(a−1)−1 = e. Consequently, multiplying both sides of this equation by a,
we have

(a−1)−1 = e(a−1)−1 = aa−1(a−1)−1 = ae = a.

�

It makes sense to write equations with group elements and group operations. If a and b are two
elements in a group G, does there exist an element x ∈ G such that ax = b? If such an x does exist,
is it unique? The following proposition answers both of these questions positively.

Proposition 1.6 Let G be a group and a and b be any two elements in G. Then the equations
ax = b and xa = b have unique solutions in G.

Proof. Suppose that ax = b. We must show that such an x exists. Multiplying both sides of
ax = b by a−1, we have x = ex = a−1ax = a−1b.

To show uniqueness, suppose that x1 and x2 are both solutions of ax = b; then ax1 = b = ax2.
So x1 = a−1ax1 = a−1ax2 = x2. The proof for the existence and uniqueness of the solution of
xa = b is similar. �

Proposition 1.7 If G is a group and a, b, c ∈ G, then ba = ca implies b = c and ab = ac implies
b = c.

This proposition tells us that the right and left cancellation laws are true in groups. We
leave the proof as an exercise.

We can use exponential notation for groups just as we do in ordinary algebra. If G is a group
and g ∈ G, then we define g0 = e. For n ∈ N, we define

gn = g · g · · · g︸ ︷︷ ︸
n times

and
g−n = g−1 · g−1 · · · g−1︸ ︷︷ ︸

n times

.

Theorem 1.8 In a group, the usual laws of exponents hold; that is, for all g, h ∈ G,

1. gmgn = gm+n for all m,n ∈ Z;

2. (gm)n = gmn for all m,n ∈ Z;

3. (gh)n = (h−1g−1)−n for all n ∈ Z. Furthermore, if G is abelian, then (gh)n = gnhn.

We will leave the proof of this theorem as an exercise. Notice that (gh)n 6= gnhn in general, since
the group may not be abelian. If the group is Z or Zn, we write the group operation additively and
the exponential operation multiplicatively; that is, we write ng instead of gn. The laws of exponents
now become

1. mg + ng = (m+ n)g for all m,n ∈ Z;

2. m(ng) = (mn)g for all m,n ∈ Z;
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3. m(g + h) = mg +mh for all n ∈ Z.

It is important to realize that the last statement can be made only because Z and Zn are commutative
groups.

Historical Note

Although the first clear axiomatic definition of a group was not given until the late 1800s, group-theoretic
methods had been employed before this time in the development of many areas of mathematics, including
geometry and the theory of algebraic equations.

Joseph-Louis Lagrange used group-theoretic methods in a 1770–1771 memoir to study methods of solving

polynomial equations. Later, Évariste Galois (1811–1832) succeeded in developing the mathematics necessary

to determine exactly which polynomial equations could be solved in terms of the polynomials’ coefficients.

Galois’ primary tool was group theory.

The study of geometry was revolutionized in 1872 when Felix Klein proposed that geometric spaces should

be studied by examining those properties that are invariant under a transformation of the space. Sophus Lie,

a contemporary of Klein, used group theory to study solutions of partial differential equations. One of the

first modern treatments of group theory appeared in William Burnside’s The Theory of Groups of Finite

Order [1], first published in 1897.

1.3 Subgroups

Definitions and Examples

Sometimes we wish to investigate smaller groups sitting inside a larger group. The set of even
integers 2Z = {. . . ,−2, 0, 2, 4, . . .} is a group under the operation of addition. This smaller group
sits naturally inside of the group of integers under addition. We define a subgroup H of a group G
to be a subset H of G such that when the group operation of G is restricted to H, H is a group in
its own right. Observe that every group G with at least two elements will always have at least two
subgroups, the subgroup consisting of the identity element alone and the entire group itself. The
subgroup H = {e} of a group G is called the trivial subgroup. A subgroup that is a proper subset
of G is called a proper subgroup. In many of the examples that we have investigated up to this
point, there exist other subgroups besides the trivial and improper subgroups.

Example 10. Consider the set of nonzero real numbers, R∗, with the group operation of multipli-
cation. The identity of this group is 1 and the inverse of any element a ∈ R∗ is just 1/a. We will
show that

Q∗ = {p/q : p and q are nonzero integers}

is a subgroup of R∗. The identity of R∗ is 1; however, 1 = 1/1 is the quotient of two nonzero integers.
Hence, the identity of R∗ is in Q∗. Given two elements in Q∗, say p/q and r/s, their product pr/qs
is also in Q∗. The inverse of any element p/q ∈ Q∗ is again in Q∗ since (p/q)−1 = q/p. Since
multiplication in R∗ is associative, multiplication in Q∗ is associative. �

Example 11. Recall that C∗ is the multiplicative group of nonzero complex numbers. Let
H = {1,−1, i,−i}. Then H is a subgroup of C∗. It is quite easy to verify that H is a group under
multiplication and that H ⊂ C∗. �
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Example 12. Let SL2(R) be the subset of GL2(R) consisting of matrices of determinant one; that
is, a matrix

A =

(
a b
c d

)
is in SL2(R) exactly when ad− bc = 1. To show that SL2(R) is a subgroup of the general linear
group, we must show that it is a group under matrix multiplication. The 2× 2 identity matrix is in
SL2(R), as is the inverse of the matrix A:

A−1 =

(
d −b
−c a

)
.

It remains to show that multiplication is closed; that is, that the product of two matrices of
determinant one also has determinant one. We will leave this task as an exercise. The group SL2(R)
is called the special linear group. �

Example 13. It is important to realize that a subset H of a group G can be a group without being
a subgroup of G. For H to be a subgroup of G it must inherit G’s binary operation. The set of all
2 × 2 matrices, M2(R), forms a group under the operation of addition. The 2 × 2 general linear
group is a subset of M2(R) and is a group under matrix multiplication, but it is not a subgroup of
M2(R). If we add two invertible matrices, we do not necessarily obtain another invertible matrix.
Observe that (

1 0
0 1

)
+

(
−1 0
0 −1

)
=

(
0 0
0 0

)
,

but the zero matrix is not in GL2(R). �

Example 14. One way of telling whether or not two groups are the same is by examining their
subgroups. Other than the trivial subgroup and the group itself, the group Z4 has a single subgroup
consisting of the elements 0 and 2. From the group Z2, we can form another group of four elements
as follows. As a set this group is Z2 × Z2. We perform the group operation coordinatewise; that is,
(a, b)+(c, d) = (a+c, b+d). Table 1.5 is an addition table for Z2×Z2. Since there are three nontrivial
proper subgroups of Z2 × Z2, H1 = {(0, 0), (0, 1)}, H2 = {(0, 0), (1, 0)}, and H3 = {(0, 0), (1, 1)}, Z4

and Z2 × Z2 must be different groups. �

+ (0,0) (0,1) (1,0) (1,1)
(0,0) (0,0) (0,1) (1,0) (1,1)
(0,1) (0,1) (0,0) (1,1) (1,0)
(1,0) (1,0) (1,1) (0,0) (0,1)
(1,1) (1,1) (1,0) (0,1) (0,0)

Table 1.5. Addition table for Z2 × Z2

Some Subgroup Theorems

Let us examine some criteria for determining exactly when a subset of a group is a subgroup.
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Proposition 1.9 A subset H of G is a subgroup if and only if it satisfies the following conditions.

1. The identity e of G is in H.

2. If h1, h2 ∈ H, then h1h2 ∈ H.

3. If h ∈ H, then h−1 ∈ H.

Proof. First suppose that H is a subgroup of G. We must show that the three conditions hold.
Since H is a group, it must have an identity eH . We must show that eH = e, where e is the identity
of G. We know that eHeH = eH and that eeH = eHe = eH ; hence, eeH = eHeH . By right-hand
cancellation, e = eH . The second condition holds since a subgroup H is a group. To prove the third
condition, let h ∈ H. Since H is a group, there is an element h′ ∈ H such that hh′ = h′h = e. By
the uniqueness of the inverse in G, h′ = h−1.

Conversely, if the three conditions hold, we must show that H is a group under the same
operation as G; however, these conditions plus the associativity of the binary operation are exactly
the axioms stated in the definition of a group. �

Proposition 1.10 Let H be a subset of a group G. Then H is a subgroup of G if and only if
H 6= ∅, and whenever g, h ∈ H then gh−1 is in H.

Proof. Let H be a nonempty subset of G. Then H contains some element g. So gg−1 = e is in H.
If g ∈ H, then eg−1 = g−1 is also in H. Finally, let g, h ∈ H. We must show that their product is
also in H. However, g(h−1)−1 = gh ∈ H. Hence, H is indeed a subgroup of G. Conversely, if g and
h are in H, we want to show that gh−1 ∈ H. Since h is in H, its inverse h−1 must also be in H.
Because of the closure of the group operation, gh−1 ∈ H. �

Exercises

1. Find all x ∈ Z satisfying each of the following equations.

(a) 3x ≡ 2 (mod 7)

(b) 5x+ 1 ≡ 13 (mod 23)

(c) 5x+ 1 ≡ 13 (mod 26)

(d) 9x ≡ 3 (mod 5)

(e) 5x ≡ 1 (mod 6)

(f) 3x ≡ 1 (mod 6)

2. Which of the following multiplication tables defined on the set G = {a, b, c, d} form a group? Support
your answer in each case.

(a)

◦ a b c d
a a c d a
b b b c d
c c d a b
d d a b c

(b)

◦ a b c d
a a b c d
b b a d c
c c d a b
d d c b a

(c)

◦ a b c d
a a b c d
b b c d a
c c d a b
d d a b c

(d)

◦ a b c d
a a b c d
b b a c d
c c b a d
d d d b c
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3. Let S = R \ {−1} and define a binary operation on S by a ∗ b = a + b + ab. Prove that (S, ∗) is an
abelian group.

4. Give an example of two elements A and B in GL2(R) with AB 6= BA.

5. Prove that the product of two matrices in SL2(R) has determinant one.

6. Prove that the set of matrices of the form 1 x y
0 1 z
0 0 1


is a group under matrix multiplication. This group, known as the Heisenberg group, is important
in quantum physics. Matrix multiplication in the Heisenberg group is defined by1 x y

0 1 z
0 0 1

1 x′ y′

0 1 z′

0 0 1

 =

1 x+ x′ y + y′ + xz′

0 1 z + z′

0 0 1

 .

7. Prove that det(AB) = det(A) det(B) in GL2(R). Use this result to show that the binary operation in
the group GL2(R) is closed; that is, if A and B are in GL2(R), then AB ∈ GL2(R).

8. Let Zn
2 = {(a1, a2, . . . , an) : ai ∈ Z2}. Define a binary operation on Zn

2 by

(a1, a2, . . . , an) + (b1, b2, . . . , bn) = (a1 + b1, a2 + b2, . . . , an + bn).

Prove that Zn
2 is a group under this operation. This group is important in algebraic coding theory.

9. Show that R∗ = R \ {0} is a group under the operation of multiplication.

10. Given the groups R∗ and Z, let G = R∗ × Z. Define a binary operation ◦ on G by (a,m) ◦ (b, n) =
(ab,m+ n). Show that G is a group under this operation.

11. Let a and b be elements in a group G. Prove that abna−1 = (aba−1)n.

12. Let U(n) be the group of units in Zn. If n > 2, prove that there is an element k ∈ U(n) such that
k2 = 1 and k 6= 1.

13. Prove that the inverse of g1g2 · · · gn is g−1n g−1n−1 · · · g
−1
1 .

14. Prove the remainder of Theorem 1.6: if G is a group and a, b ∈ G, then the equation xa = b has unique
solutions in G.

15. Prove Theorem 1.8.

16. Prove the right and left cancellation laws for a group G; that is, show that in the group G, ba = ca
implies b = c and ab = ac implies b = c for elements a, b, c ∈ G.

17. Show that if a2 = e for all elements a in a group G, then G must be abelian.

18. Let H = {2k : k ∈ Z}. Show that H is a subgroup of Q∗.

19. Let n = 0, 1, 2, . . . and nZ = {nk : k ∈ Z}. Prove that nZ is a subgroup of Z. Show that these
subgroups are the only subgroups of Z.

20. Let T = {z ∈ C∗ : |z| = 1}. Prove that T is a subgroup of C∗.

21. Let G consist of the 2× 2 matrices of the form(
cos θ − sin θ
sin θ cos θ

)
where θ ∈ R. Prove that G is a subgroup of SL2(R).
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22. Prove that
G = {a+ b

√
2 : a, b ∈ Q and a and b are not both zero}

is a subgroup of R∗ under the group operation of multiplication.

23. Let G be the group of 2× 2 matrices under addition and

H =

{(
a b
c d

)
: a+ d = 0

}
.

Prove that H is a subgroup of G.

24. Prove or disprove: SL2(Z), the set of 2 × 2 matrices with integer entries and determinant one, is a
subgroup of SL2(R).

25. Prove that the intersection of two subgroups of a group G is also a subgroup of G.

26. Prove or disprove: If H and K are subgroups of a group G, then H ∪K is a subgroup of G.

27. Prove or disprove: If H and K are subgroups of a group G, then HK = {hk : h ∈ H and k ∈ K} is a
subgroup of G. What if G is abelian?

28. Let G be a group and g ∈ G. Show that

Z(G) = {x ∈ G : gx = xg for all g ∈ G}

is a subgroup of G. This subgroup is called the center of G.

29. If xy = x−1y−1 for all x and y in G, prove that G must be abelian.

30. If (xy)2 = xy for all x and y in G, prove that G must be abelian.

31. Prove or disprove: Every nontrivial subgroup of an nonabelian group is nonabelian.

32. Let H be a subgroup of G and

N(H) = {g ∈ G : gh = hg for all h ∈ H}.

Prove N(H) is a subgroup of G. This subgroup is called the normalizer of H in G.

15



2

Permutation Groups

Permutation groups are central to the study of geometric symmetries and to Galois theory, the study
of finding solutions of polynomial equations. They also provide abundant examples of nonabelian
groups.

Let us recall for a moment the symmetries of the equilateral triangle 4ABC from Chapter 1.
The symmetries actually consist of permutations of the three vertices, where a permutation of the
set S = {A,B,C} is a one-to-one and onto map π : S → S. The three vertices have the following
six permutations. (

A B C
A B C

) (
A B C
C A B

) (
A B C
B C A

)
(
A B C
A C B

) (
A B C
C B A

) (
A B C
B A C

)
We have used the array (

A B C
B C A

)
to denote the permutation that sends A to B, B to C, and C to A. That is,

A 7→ B

B 7→ C

C 7→ A.

The symmetries of a triangle form a group. In this chapter we will study groups of this type.

2.1 Definitions and Notation

In general, the permutations of a set X form a group SX . If X is a finite set, we can assume
X = {1, 2, . . . , n}. In this case we write Sn instead of SX . The following theorem says that Sn is a
group. We call this group the symmetric group on n letters.

Theorem 2.1 The symmetric group on n letters, Sn, is a group with n! elements, where the binary
operation is the composition of maps.
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Proof. The identity of Sn is just the identity map that sends 1 to 1, 2 to 2, . . ., n to n. If
f : Sn → Sn is a permutation, then f−1 exists, since f is one-to-one and onto; hence, every
permutation has an inverse. Composition of maps is associative, which makes the group operation
associative. We leave the proof that |Sn| = n! as an exercise. �

A subgroup of Sn is called a permutation group.

Example 1. Consider the subgroup G of S5 consisting of the identity permutation id and the
permutations

σ =

(
1 2 3 4 5
1 2 3 5 4

)
τ =

(
1 2 3 4 5
3 2 1 4 5

)
µ =

(
1 2 3 4 5
3 2 1 5 4

)
.

The following table tells us how to multiply elements in the permutation group G.

◦ id σ τ µ

id id σ τ µ
σ σ id µ τ
τ τ µ id σ
µ µ τ σ id

�

Remark. Though it is natural to multiply elements in a group from left to right, functions are
composed from right to left. Let σ and τ be permutations on a set X. To compose σ and τ as
functions, we calculate (σ ◦ τ)(x) = σ(τ(x)). That is, we do τ first, then σ. There are several ways
to approach this inconsistency. We will adopt the convention of multiplying permutations right to
left. To compute στ , do τ first and then σ. That is, by στ(x) we mean σ(τ(x)). (Another way of
solving this problem would be to write functions on the right; that is, instead of writing σ(x), we
could write (x)σ. We could also multiply permutations left to right to agree with the usual way of
multiplying elements in a group. Certainly all of these methods have been used.

Example 2. Permutation multiplication is not usually commutative. Let

σ =

(
1 2 3 4
4 1 2 3

)
τ =

(
1 2 3 4
2 1 4 3

)
.

Then

στ =

(
1 2 3 4
1 4 3 2

)
,

but

τσ =

(
1 2 3 4
3 2 1 4

)
.

�
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Cycle Notation

The notation that we have used to represent permutations up to this point is cumbersome, to say
the least. To work effectively with permutation groups, we need a more streamlined method of
writing down and manipulating permutations.

A permutation σ ∈ SX is a cycle of length k if there exist elements a1, a2, . . . , ak ∈ X such
that

σ(a1) = a2

σ(a2) = a3
...

σ(ak) = a1

and σ(x) = x for all other elements x ∈ X. We will write (a1, a2, . . . , ak) to denote the cycle σ.
Cycles are the building blocks of all permutations.

Example 3. The permutation

σ =

(
1 2 3 4 5 6 7
6 3 5 1 4 2 7

)
= (162354)

is a cycle of length 6, whereas

τ =

(
1 2 3 4 5 6
1 4 2 3 5 6

)
= (243)

is a cycle of length 3.
Not every permutation is a cycle. Consider the permutation(

1 2 3 4 5 6
2 4 1 3 6 5

)
= (1243)(56).

This permutation actually contains a cycle of length 2 and a cycle of length 4. �

Example 4. It is very easy to compute products of cycles. Suppose that

σ = (1352)

τ = (256).

We can think of σ as

1 7→ 3

3 7→ 5

5 7→ 2

2 7→ 1

18



and τ as

2 7→ 5

5 7→ 6

6 7→ 2

Hence, στ = (1356). If µ = (1634), then σµ = (1652)(34). �

Two cycles in SX , σ = (a1, a2, . . . , ak) and τ = (b1, b2, . . . , bl), are disjoint if ai 6= bj for all i
and j.

Example 5. The cycles (135) and (27) are disjoint; however, the cycles (135) and (347) are not.
Calculating their products, we find that

(135)(27) = (135)(27)

(135)(347) = (13475).

The product of two cycles that are not disjoint may reduce to something less complicated; the
product of disjoint cycles cannot be simplified. �

Proposition 2.2 Let σ and τ be two disjoint cycles in SX . Then στ = τσ.

Proof. Let σ = (a1, a2, . . . , ak) and τ = (b1, b2, . . . , bl). We must show that στ(x) = τσ(x) for all
x ∈ X. If x is neither {a1, a2, . . . , ak} nor {b1, b2, . . . , bl}, then both σ and τ fix x. That is, σ(x) = x
and τ(x) = x. Hence,

στ(x) = σ(τ(x)) = σ(x) = x = τ(x) = τ(σ(x)) = τσ(x).

Do not forget that we are multiplying permutations right to left, which is the opposite of the
order in which we usually multiply group elements. Now suppose that x ∈ {a1, a2, . . . , ak}. Then
σ(ai) = a(i mod k)+1; that is,

a1 7→ a2

a2 7→ a3
...

ak−1 7→ ak

ak 7→ a1.

However, τ(ai) = ai since σ and τ are disjoint. Therefore,

στ(ai) = σ(τ(ai))

= σ(ai)

= a(i mod k)+1

= τ(a(i mod k)+1)

= τ(σ(ai))

= τσ(ai).

Similarly, if x ∈ {b1, b2, . . . , bl}, then σ and τ also commute. �
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Theorem 2.3 Every permutation in Sn can be written as the product of disjoint cycles.

Proof. We can assume that X = {1, 2, . . . , n}. Let σ ∈ Sn, and define X1 to be {σ(1), σ2(1), . . .}.
The set X1 is finite since X is finite. Now let i be the first integer in X that is not in X1 and define
X2 by {σ(i), σ2(i), . . .}. Again, X2 is a finite set. Continuing in this manner, we can define finite
disjoint sets X3, X4, . . .. Since X is a finite set, we are guaranteed that this process will end and
there will be only a finite number of these sets, say r. If σi is the cycle defined by

σi(x) =

{
σ(x) x ∈ Xi

x x /∈ Xi,

then σ = σ1σ2 · · ·σr. Since the sets X1, X2, . . . , Xr are disjoint, the cycles σ1, σ2, . . . , σr must also
be disjoint. �

Example 6. Let

σ =

(
1 2 3 4 5 6
6 4 3 1 5 2

)
τ =

(
1 2 3 4 5 6
3 2 1 5 6 4

)
.

Using cycle notation, we can write

σ = (1624)

τ = (13)(456)

στ = (136)(245)

τσ = (143)(256).

�

Remark. From this point forward we will find it convenient to use cycle notation to represent
permutations. When using cycle notation, we often denote the identity permutation by (1).

Transpositions

The simplest permutation is a cycle of length 2. Such cycles are called transpositions. Since

(a1, a2, . . . , an) = (a1an)(a1an−1) · · · (a1a3)(a1a2),

any cycle can be written as the product of transpositions, leading to the following proposition.

Proposition 2.4 Any permutation of a finite set containing at least two elements can be written
as the product of transpositions.

Example 7. Consider the permutation

(16)(253) = (16)(23)(25) = (16)(45)(23)(45)(25).
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As we can see, there is no unique way to represent permutation as the product of transpositions.
For instance, we can write the identity permutation as (12)(12), as (13)(24)(13)(24), and in many
other ways. However, as it turns out, no permutation can be written as the product of both an even
number of transpositions and an odd number of transpositions. For instance, we could represent
the permutation (16) by

(23)(16)(23)

or by
(35)(16)(13)(16)(13)(35)(56),

but (16) will always be the product of an odd number of transpositions. �

Lemma 2.5 If the identity is written as the product of r transpositions,

id = τ1τ2 · · · τr,

then r is an even number.

Proof. We will employ induction on r. A transposition cannot be the identity; hence, r > 1. If
r = 2, then we are done. Suppose that r > 2. In this case the product of the last two transpositions,
τr−1τr, must be one of the following cases:

(ab)(ab) = id

(bc)(ab) = (ac)(bc)

(cd)(ab) = (ab)(cd)

(ac)(ab) = (ab)(bc),

where a, b, c, and d are distinct.
The first equation simply says that a transposition is its own inverse. If this case occurs, delete

τr−1τr from the product to obtain

id = τ1τ2 · · · τr−3τr−2.

By induction r − 2 is even; hence, r must be even.
In each of the other three cases, we can replace τr−1τr with the right-hand side of the corre-

sponding equation to obtain a new product of r transpositions for the identity. In this new product
the last occurrence of a will be in the next-to-the-last transposition. We can continue this process
with τr−2τr−1 to obtain either a product of r− 2 transpositions or a new product of r transpositions
where the last occurrence of a is in τr−2. If the identity is the product of r − 2 transpositions,
then again we are done, by our induction hypothesis; otherwise, we will repeat the procedure with
τr−3τr−2.

At some point either we will have two adjacent, identical transpositions canceling each other
out or a will be shuffled so that it will appear only in the first transposition. However, the latter
case cannot occur, because the identity would not fix a in this instance. Therefore, the identity
permutation must be the product of r − 2 transpositions and, again by our induction hypothesis,
we are done. �
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Theorem 2.6 If a permutation σ can be expressed as the product of an even number of trans-
positions, then any other product of transpositions equaling σ must also contain an even number
of transpositions. Similarly, if σ can be expressed as the product of an odd number of transpo-
sitions, then any other product of transpositions equaling σ must also contain an odd number of
transpositions.

Proof. Suppose that
σ = σ1σ2 · · ·σm = τ1τ2 · · · τn,

where m is even. We must show that n is also an even number. The inverse of σ−1 is σm · · ·σ1.
Since

id = σσm · · ·σ1 = τ1 · · · τnσm · · ·σ1,

n must be even by Lemma 2.5. The proof for the case in which σ can be expressed as an odd
number of transpositions is left as an exercise. �

In light of Theorem 2.6, we define a permutation to be even if it can be expressed as an even
number of transpositions and odd if it can be expressed as an odd number of transpositions.

The Alternating Groups

One of the most important subgroups of Sn is the set of all even permutations, An. The group An
is called the alternating group on n letters.

Theorem 2.7 The set An is a subgroup of Sn.

Proof. Since the product of two even permutations must also be an even permutation, An is closed.
The identity is an even permutation and therefore is in An. If σ is an even permutation, then

σ = σ1σ2 · · ·σr,

where σi is a transposition and r is even. Since the inverse of any transposition is itself,

σ−1 = σrσr−1 · · ·σ1

is also in An. �

Proposition 2.8 The number of even permutations in Sn, n ≥ 2, is equal to the number of odd
permutations; hence, the order of An is n!/2.

Proof. Let An be the set of even permutations in Sn and Bn be the set of odd permutations. If
we can show that there is a bijection between these sets, they must contain the same number of
elements. Fix a transposition σ in Sn. Since n ≥ 2, such a σ exists. Define

λσ : An → Bn

by
λσ(τ) = στ.

Suppose that λσ(τ) = λσ(µ). Then στ = σµ and so

τ = σ−1στ = σ−1σµ = µ.
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Therefore, λσ is one-to-one. We will leave the proof that λσ is surjective to the reader. �

Example 8. The group A4 is the subgroup of S4 consisting of even permutations. There are twelve
elements in A4:

(1) (12)(34) (13)(24) (14)(23)
(123) (132) (124) (142)
(134) (143) (234) (243).

One of the end-of-chapter exercises will be to write down all the subgroups of A4. You will find
that there is no subgroup of order 6. Does this surprise you? �

Historical Note

Lagrange first thought of permutations as functions from a set to itself, but it was Cauchy who developed

the basic theorems and notation for permutations. He was the first to use cycle notation. Augustin-Louis

Cauchy (1789–1857) was born in Paris at the height of the French Revolution. His family soon left Paris for

the village of Arcueil to escape the Reign of Terror. One of the family’s neighbors there was Pierre-Simon

Laplace (1749–1827), who encouraged him to seek a career in mathematics. Cauchy began his career as a

mathematician by solving a problem in geometry given to him by Lagrange. Over 800 papers were written

by Cauchy on such diverse topics as differential equations, finite groups, applied mathematics, and complex

analysis. He was one of the mathematicians responsible for making calculus rigorous. Perhaps more theorems

and concepts in mathematics have the name Cauchy attached to them than that of any other mathematician.

1
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2n

4

Figure 2.1. A regular n-gon

2.2 Dihedral Groups

Another special type of permutation group is the dihedral group. Recall the symmetry group of
an equilateral triangle in Chapter 1. Such groups consist of the rigid motions of a regular n-sided
polygon or n-gon. For n = 3, 4, . . ., we define the nth dihedral group to be the group of rigid
motions of a regular n-gon. We will denote this group by Dn. We can number the vertices of a
regular n-gon by 1, 2, . . . , n (Figure 2.1). Notice that there are exactly n choices to replace the first
vertex. If we replace the first vertex by k, then the second vertex must be replaced either by vertex
k + 1 or by vertex k − 1; hence, there are 2n possible rigid motions of the n-gon. We summarize
these results in the following theorem.
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Theorem 2.9 The dihedral group, Dn, is a subgroup of Sn of order 2n.
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Figure 2.2. Rotations and reflections of a regular n-gon
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Figure 2.3. Types of reflections of a regular n-gon

Theorem 2.10 The group Dn, n ≥ 3, consists of all products of the two elements r and s, satisfying
the relations

rn = id

s2 = id

srs = r−1.
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Proof. The possible motions of a regular n-gon are either reflections or rotations (Figure 2.2).
There are exactly n possible rotations:

id,
360◦

n
, 2 · 360◦

n
, . . . , (n− 1) · 360◦

n
.

We will denote the rotation 360◦/n by r. The rotation r generates all of the other rotations. That
is,

rk = k · 360◦

n
.

Label the n reflections s1, s2, . . . , sn, where sk is the reflection that leaves vertex k fixed. There
are two cases of reflection, depending on whether n is even or odd. If there are an even number
of vertices, then 2 vertices are left fixed by a reflection. If there are an odd number of vertices,
then only a single vertex is left fixed by a reflection (Figure 2.3). In either case, the order of sk
is two. Let s = s1. Then s2 = id and rn = id. Since any rigid motion t of the n-gon replaces the
first vertex by the vertex k, the second vertex must be replaced by either k + 1 or by k − 1. If the
second vertex is replaced by k + 1, then t = rk−1. If it is replaced by k − 1, then t = rk−1s. Hence,
r and s generate Dn; that is, Dn consists of all finite products of r and s. We will leave the proof
that srs = r−1 as an exercise. �
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Figure 2.4. The group D4

Example 9. The group of rigid motions of a square, D4, consists of eight elements. With the
vertices numbered 1, 2, 3, 4 (Figure 2.4), the rotations are

r = (1234)

r2 = (13)(24)

r3 = (1432)

r4 = id

and the reflections are

s1 = (24)

s2 = (13).
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The order of D4 is 8. The remaining two elements are

rs1 = (12)(34)

r3s1 = (14)(23).

�
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Figure 2.5. The motion group of a cube

The Motion Group of a Cube

We can investigate the groups of rigid motions of geometric objects other than a regular n-sided
polygon to obtain interesting examples of permutation groups. Let us consider the group of rigid
motions of a cube. One of the first questions that we can ask about this group is “what is its order?”
A cube has 6 sides. If a particular side is facing upward, then there are four possible rotations of
the cube that will preserve the upward-facing side. Hence, the order of the group is 6 · 4 = 24. We
have just proved the following proposition.

Proposition 2.11 The group of rigid motions of a cube contains 24 elements.

Theorem 2.12 The group of rigid motions of a cube is S4.

Proof. From Proposition 2.11, we already know that the motion group of the cube has 24 elements,
the same number of elements as there are in S4. There are exactly four diagonals in the cube. If we
label these diagonals 1, 2, 3, and 4, we must show that the motion group of the cube will give us
any permutation of the diagonals (Figure 2.5). If we can obtain all of these permutations, then S4
and the group of rigid motions of the cube must be the same. To obtain a transposition we can
rotate the cube 180◦ about the axis joining the midpoints of opposite edges (Figure 2.6). There are
six such axes, giving all transpositions in S4. Since every element in S4 is the product of a finite
number of transpositions, the motion group of a cube must be S4. �

Exercises

1. Write the following permutations in cycle notation.

26



2

4 3

1

1 2

43
1

4 3

2

2 1

43

Figure 2.6. Transpositions in the motion group of a cube

(a) (
1 2 3 4 5
2 4 1 5 3

)
(b) (

1 2 3 4 5
4 2 5 1 3

)

(c) (
1 2 3 4 5
3 5 1 4 2

)
(d) (

1 2 3 4 5
1 4 3 2 5

)

2. Compute each of the following.

(a) (1345)(234)

(b) (12)(1253)

(c) (143)(23)(24)

(d) (1423)(34)(56)(1324)

(e) (1254)(13)(25)

(f) (1254)(13)(25)2

(g) (1254)−1(123)(45)(1254)

(h) (1254)2(123)(45)

(i) (123)(45)(1254)−2

(j) (1254)100

(k) |(1254)|
(l) |(1254)2|

(m) (12)−1

(n) (12537)−1

(o) [(12)(34)(12)(47)]−1

(p) [(1235)(467)]−1

3. Express the following permutations as products of transpositions and identify them as even or odd.

(a) (14356)

(b) (156)(234)

(c) (1426)(142)

(d) (17254)(1423)(154632)

(e) (142637)

4. Find (a1, a2, . . . , an)−1.

5. Let σ ∈ Sn have order n. Show that for all integers i and j, σi = σj if and only if i ≡ j (mod n).

6. Let σ = σ1 · · ·σm ∈ Sn be the product of disjoint cycles. Prove that the order of σ is the least common
multiple of the lengths of the cycles σ1, . . . , σm.

7. Let σ ∈ Sn. Prove that σ can be written as the product of at most n− 1 transpositions.

8. Let σ ∈ Sn. If σ is not a cycle, prove that σ can be written as the product of at most n−2 transpositions.
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9. If σ can be expressed as an odd number of transpositions, show that any other product of transpositions
equaling σ must also be odd.

10. If σ is a cycle of odd length, prove that σ2 is also a cycle.

11. Show that a 3-cycle is an even permutation.

12. Let τ = (a1, a2, . . . , ak) be a cycle of length k.

(a) Prove that if σ is any permutation, then

στσ−1 = (σ(a1), σ(a2), . . . , σ(ak))

is a cycle of length k.

(b) Let µ be a cycle of length k. Prove that there is a permutation σ such that στσ−1 = µ.

13. For α and β in Sn, define α ∼ β if there exists an σ ∈ Sn such that σασ−1 = β. Show that ∼ is an
equivalence relation on Sn.
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3

Cosets and Lagrange’s Theorem

Lagrange’s Theorem, one of the most important results in finite group theory, states that the order of
a subgroup must divide the order of the group. This theorem provides a powerful tool for analyzing
finite groups; it gives us an idea of exactly what type of subgroups we might expect a finite group
to possess. Central to understanding Lagranges’s Theorem is the notion of a coset.

3.1 Cosets

Let G be a group and H a subgroup of G. Define a left coset of H with representative g ∈ G to
be the set

gH = {gh : h ∈ H}.

Right cosets can be defined similarly by

Hg = {hg : h ∈ H}.

If left and right cosets coincide or if it is clear from the context to which type of coset that we are
referring, we will use the word coset without specifying left or right.

Example 1. Let H be the subgroup of Z6 consisting of the elements 0 and 3. The cosets are

0 +H = 3 +H = {0, 3}
1 +H = 4 +H = {1, 4}
2 +H = 5 +H = {2, 5}.

We will always write the cosets of subgroups of Z and Zn with the additive notation we have used
for cosets here. In a commutative group, left and right cosets are always identical. �

Example 2. Let H be the subgroup of S3 defined by the permutations {(1), (123), (132)}. The left
cosets of H are

(1)H = (123)H = (132)H = {(1), (123), (132)}
(12)H = (13)H = (23)H = {(12), (13), (23)}.
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The right cosets of H are exactly the same as the left cosets:

H(1) = H(123) = H(132) = {(1), (123), (132)}
H(12) = H(13) = H(23) = {(12), (13), (23)}.

It is not always the case that a left coset is the same as a right coset. Let K be the subgroup of
S3 defined by the permutations {(1), (12)}. Then the left cosets of K are

(1)K = (12)K = {(1), (12)}
(13)K = (123)K = {(13), (123)}
(23)K = (132)K = {(23), (132)};

however, the right cosets of K are

K(1) = K(12) = {(1), (12)}
K(13) = K(132) = {(13), (132)}
K(23) = K(123) = {(23), (123)}.

�

The following lemma is quite useful when dealing with cosets. (We leave its proof as an exercise.)

Lemma 3.1 Let H be a subgroup of a group G and suppose that g1, g2 ∈ G. The following conditions
are equivalent.

1. g1H = g2H;

2. Hg−11 = Hg−12 ;

3. g1H ⊆ g2H;

4. g2 ∈ g1H;

5. g−11 g2 ∈ H.

In all of our examples the cosets of a subgroup H partition the larger group G. The following
theorem proclaims that this will always be the case.

Theorem 3.2 Let H be a subgroup of a group G. Then the left cosets of H in G partition G. That
is, the group G is the disjoint union of the left cosets of H in G.

Proof. Let g1H and g2H be two cosets of H in G. We must show that either g1H ∩ g2H = ∅ or
g1H = g2H. Suppose that g1H ∩ g2H 6= ∅ and a ∈ g1H ∩ g2H. Then by the definition of a left
coset, a = g1h1 = g2h2 for some elements h1 and h2 in H. Hence, g1 = g2h2h

−1
1 or g1 ∈ g2H. By

Lemma 3.1, g1H = g2H. �

Remark. There is nothing special in this theorem about left cosets. Right cosets also partition
G; the proof of this fact is exactly the same as the proof for left cosets except that all group
multiplications are done on the opposite side of H.
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Let G be a group and H be a subgroup of G. Define the index of H in G to be the number of
left cosets of H in G. We will denote the index by [G : H].

Example 3. Let G = Z6 and H = {0, 3}. Then [G : H] = 3. �

Example 4. Suppose that G = S3, H = {(1), (123), (132)}, and K = {(1), (12)}. Then [G : H] = 2
and [G : K] = 3. �

Theorem 3.3 Let H be a subgroup of a group G. The number of left cosets of H in G is the same
as the number of right cosets of H in G.

Proof. Let LH andRH denote the set of left and right cosets of H in G, respectively. If we can define
a bijective map φ : LH → RH , then the theorem will be proved. If gH ∈ LH , let φ(gH) = Hg−1.
By Lemma 3.1, the map φ is well-defined; that is, if g1H = g2H, then Hg−11 = Hg−12 . To show that
φ is one-to-one, suppose that

Hg−11 = φ(g1H) = φ(g2H) = Hg−12 .

Again by Lemma 3.1, g1H = g2H. The map φ is onto since φ(g−1H) = Hg. �

3.2 Lagrange’s Theorem

Proposition 3.4 Let H be a subgroup of G with g ∈ G and define a map φ : H → gH by φ(h) = gh.
The map φ is bijective; hence, the number of elements in H is the same as the number of elements
in gH.

Proof. We first show that the map φ is one-to-one. Suppose that φ(h1) = φ(h2) for elements
h1, h2 ∈ H. We must show that h1 = h2, but φ(h1) = gh1 and φ(h2) = gh2. So gh1 = gh2, and by
left cancellation h1 = h2. To show that φ is onto is easy. By definition every element of gH is of
the form gh for some h ∈ H and φ(h) = gh. �

Theorem 3.5 (Lagrange) Let G be a finite group and let H be a subgroup of G. Then |G|/|H| =
[G : H] is the number of distinct left cosets of H in G. In particular, the number of elements in H
must divide the number of elements in G.

Proof. The group G is partitioned into [G : H] distinct left cosets. Each left coset has |H| elements;
therefore, |G| = [G : H]|H|. �

Corollary 3.6 Suppose that G is a finite group and g ∈ G. Then the order of g must divide the
number of elements in G.

Corollary 3.7 Let |G| = p with p a prime number. Then G is cyclic and any g ∈ G such that
g 6= e is a generator.

Proof. Let g be in G such that g 6= e. Then by Corollary 3.6, the order of g must divide the order
of the group. Since |〈g〉| > 1, it must be p. Hence, g generates G. �

Corollary 3.7 suggests that groups of prime order p must somehow look like Zp.
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Corollary 3.8 Let H and K be subgroups of a finite group G such that G ⊃ H ⊃ K. Then

[G : K] = [G : H][H : K].

Proof. Observe that

[G : K] =
|G|
|K|

=
|G|
|H|
· |H|
|K|

= [G : H][H : K].

�

The converse of Lagrange’s Theorem is false. The group A4 has order 12; however, it
can be shown that it does not possess a subgroup of order 6. According to Lagrange’s Theorem,
subgroups of a group of order 12 can have orders of either 1, 2, 3, 4, or 6. However, we are not
guaranteed that subgroups of every possible order exist. To prove that A4 has no subgroup of order
6, we will assume that it does have a subgroup H such that |H| = 6 and show that a contradiction
must occur. The group A4 contains eight 3-cycles; hence, H must contain a 3-cycle. We will show
that if H contains one 3-cycle, then it must contain every 3-cycle, contradicting the assumption
that H has only 6 elements.

Theorem 3.9 Two cycles τ and µ in Sn have the same length if and only if there exists a σ ∈ Sn
such that µ = στσ−1.

Proof. Suppose that

τ = (a1, a2, . . . , ak)

µ = (b1, b2, . . . , bk).

Define σ to be the permutation

σ(a1) = b1

σ(a2) = b2
...

σ(ak) = bk.

Then µ = στσ−1.
Conversely, suppose that τ = (a1, a2, . . . , ak) is a k-cycle and σ ∈ Sn. If σ(ai) = b and

σ(a(i mod k)+1) = b′, then µ(b) = b′. Hence,

µ = (σ(a1), σ(a2), . . . , σ(ak)).

Since σ is one-to-one and onto, µ is a cycle of the same length as τ . �

Corollary 3.10 The group A4 has no subgroup of order 6.

Proof. Since [A4 : H] = 2, there are only two cosets of H in A4. Inasmuch as one of the cosets is
H itself, right and left cosets must coincide; therefore, gH = Hg or gHg−1 = H for every g ∈ A4.
By Theorem 3.9, if H contains one 3-cycle, then it must contain every 3-cycle, contradicting the
order of H. �
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3.3 Fermat’s and Euler’s Theorems

The Euler φ-function is the map φ : N→ N defined by φ(n) = 1 for n = 1, and, for n > 1, φ(n)
is the number of positive integers m with 1 ≤ m < n and gcd(m,n) = 1.

From Proposition 1.1, we know that the order of U(n), the group of units in Zn, is φ(n). For
example, |U(12)| = φ(12) = 4 since the numbers that are relatively prime to 12 are 1, 5, 7, and 11.
For any prime p, φ(p) = p− 1. We state these results in the following theorem.

Theorem 3.11 Let U(n) be the group of units in Zn. Then |U(n)| = φ(n).

The following theorem is an important result in number theory, due to Leonhard Euler.

Theorem 3.12 (Euler’s Theorem) Let a and n be integers such that n > 0 and gcd(a, n) = 1.
Then aφ(n) ≡ 1 (mod n).

Proof. By Theorem 3.11 the order of U(n) is φ(n). Consequently, aφ(n) = 1 for all a ∈ U(n); or
aφ(n) − 1 is divisible by n. Therefore, aφ(n) ≡ 1 (mod n). �

If we consider the special case of Euler’s Theorem in which n = p is prime and recall that
φ(p) = p− 1, we obtain the following result, due to Pierre de Fermat.

Theorem 3.13 (Fermat’s Little Theorem) Let p be any prime number and suppose that p 6 |a.
Then

ap−1 ≡ 1 (mod p).

Furthermore, for any integer b, bp ≡ b (mod p).

Historical Note

Joseph-Louis Lagrange (1736–1813), born in Turin, Italy, was of French and Italian descent. His talent for

mathematics became apparent at an early age. Leonhard Euler recognized Lagrange’s abilities when Lagrange,

who was only 19, communicated to Euler some work that he had done in the calculus of variations. That

year he was also named a professor at the Royal Artillery School in Turin. At the age of 23 he joined the

Berlin Academy. Frederick the Great had written to Lagrange proclaiming that the “greatest king in Europe”

should have the “greatest mathematician in Europe” at his court. For 20 years Lagrange held the position

vacated by his mentor, Euler. His works include contributions to number theory, group theory, physics and

mechanics, the calculus of variations, the theory of equations, and differential equations. Along with Laplace

and Lavoisier, Lagrange was one of the people responsible for designing the metric system. During his life

Lagrange profoundly influenced the development of mathematics, leaving much to the next generation of

mathematicians in the form of examples and new problems to be solved.

Exercises

1. Suppose that G is a finite group with an element g of order 5 and an element h of order 7. Why must
|G| ≥ 35?

2. Suppose that G is a finite group with 60 elements. What are the orders of possible subgroups of G?

3. Prove or disprove: Every subgroup of the integers has finite index.
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4. Prove or disprove: Every subgroup of the integers has finite order.

5. Verify Euler’s Theorem for n = 15 and a = 4.

6. Use Fermat’s Little Theorem to show that if p = 4n+ 3 is prime, there is no solution to the equation
x2 ≡ −1 (mod p).

7. Show that the integers have infinite index in the additive group of rational numbers.

8. Show that the additive group of real numbers has infinite index in the additive group of the complex
numbers.

9. Let H be a subgroup of a group G and suppose that g1, g2 ∈ G. Prove that the following conditions
are equivalent.

(a) g1H = g2H

(b) Hg−11 = Hg−12

(c) g1H ⊆ g2H
(d) g2 ∈ g1H
(e) g−11 g2 ∈ H

10. If ghg−1 ∈ H for all g ∈ G and h ∈ H, show that right cosets are identical to left cosets.

11. Let G be a cyclic group of order n. Show that there are exactly φ(n) generators for G.

12. Let n = pe11 p
e2
2 · · · p

ek
k be the factorization of n into distinct primes. Prove that

φ(n) = n

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(

1− 1

pk

)
.

13. Show that
n =

∑
d|n

φ(d)

for all positive integers n.
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GNU Free Documentation License

Version 1.2, November 2002
Copyright 2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not
allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful document “free”
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and
publisher a way to get credit for their work, while not being considered responsible for modifications made by
others.

This License is a kind of “copyleft”, which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs
free documentation: a free program should come with manuals providing the same freedoms that the software
does. But this License is not limited to software manuals; it can be used for any textual work, regardless
of subject matter or whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. Applicability And Definitions

This License applies to any manual or other work, in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein.
The “Document”, below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as “you”. You accept the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s overall
subject (or to related matters) and contains nothing that could fall directly within that overall subject.
(Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any
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36 GFDL LICENSEmathematics.) The relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section does
not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document
may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are
none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be
at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document straightforwardly
with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters or for automatic translation
to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent
file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for any substantial
amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats
include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally
available, and the machine-generated HTML, PostScript or PDF produced by some word processors for
output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed
to hold, legibly, the material this License requires to appear in the title page. For works in formats which do
not have any title page as such, “Title Page” means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ or
contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a
specific section name mentioned below, such as “Acknowledgements”, “Dedications”, “Endorsements”,
or “History”.) To “Preserve the Title” of such a section when you modify the Document means that it
remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies
to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but
only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is
void and has no effect on the meaning of this License.

2. Verbatim Copying

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided
that this License, the copyright notices, and the license notice saying this License applies to the Document
are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You
may not use technical measures to obstruct or control the reading or further copying of the copies you make
or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.



GFDL LICENSE 373. Copying In Quantity

If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with changes limited
to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed
(as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque
copy a computer-network location from which the general network-using public has access to download using
public-standard network protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location
until at least one year after the last time you distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing
any large number of copies, to give them a chance to provide you with an updated version of the Document.

4. Modifications

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3
above, provided that you release the Modified Version under precisely this License, with the Modified Version
filling the role of the Document, thus licensing distribution and modification of the Modified Version to
whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from
those of previous versions (which should, if there were any, be listed in the History section of the
Document). You may use the same title as a previous version if the original publisher of that version
gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five), unless they release you from this
requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use
the Modified Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the
Document’s license notice.

H. Include an unaltered copy of this License.



38 GFDL LICENSEI. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the
title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no
section Entitled “History” in the Document, create one stating the title, year, authors, and publisher of
the Document as given on its Title Page, then add an item describing the Modified Version as stated
in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of
the Document, and likewise the network locations given in the Document for previous versions it was
based on. These may be placed in the “History” section. You may omit a network location for a work
that was published at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and
preserve in the section all the substance and tone of each of the contributor acknowledgements and/or
dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified
Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any
Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified
Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your
Modified Version by various parties–for example, statements of peer review or that the text has been approved
by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words
as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you may not add another; but you may
replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

5. Combining Documents

You may combine the Document with other documents released under this License, under the terms defined
in section 4 above for modified versions, provided that you include in the combination all of the Invariant
Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined
work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of
the original author or publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined work.



GFDL LICENSE 39In the combination, you must combine any sections Entitled “History” in the various original documents,
forming one section Entitled “History”; likewise combine any sections Entitled “Acknowledgements”, and any
sections Entitled “Dedications”. You must delete all sections Entitled “Endorsements”.

6. Collections Of Documents

You may make a collection consisting of the Document and other documents released under this License, and
replace the individual copies of this License in the various documents with a single copy that is included in
the collection, provided that you follow the rules of this License for verbatim copying of each of the documents
in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this License in all
other respects regarding verbatim copying of that document.

7. Aggregation With Independent Works

A compilation of the Document or its derivatives with other separate and independent documents or works,
in or on a volume of a storage or distribution medium, is called an “aggregate” if the copyright resulting from
the compilation is not used to limit the legal rights of the compilation’s users beyond what the individual
works permit. When the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers
that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in
electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. Translation

Translation is considered a kind of modification, so you may distribute translations of the Document under
the terms of section 4. Replacing Invariant Sections with translations requires special permission from their
copyright holders, but you may include translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a translation of this License, and all the license
notices in the Document, and any Warranty Disclaimers, provided that you also include the original English
version of this License and the original versions of those notices and disclaimers. In case of a disagreement
between the translation and the original version of this License or a notice or disclaimer, the original version
will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the requirement
(section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. Termination

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such parties remain in full
compliance.



40 GFDL LICENSE10. Future Revisions Of This License

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that
a particular numbered version of this License “or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

Addendum: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put
the following copyright and license notices just after the title page:

Copyright YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover
Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled “GNU
Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with . . . Texts.”
line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST,
and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those
two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples
in parallel under your choice of free software license, such as the GNU General Public License, to permit
their use in free software.


