
Unit II

Generic Programming-Function and class templates, Inheritance basics, base and derived

classes,

inheritance types, base class access control, runtime polymorphism using virtual functions,

abstracts

classes, streams I/O. Algorithms, performance analysis-time complexity and space

complexity, review

of basic data structures-The list ADT, Stack ADT, Queue ADT.

Generic Programming

1. Function and Class Templates:

 Reusable Code: Templates for functions and classes to work with any data type.

 Parameterized Types: Allow for the creation of generic algorithms.

Inheritance Basics

1. Base and Derived Classes:

 Inheriting Properties: Derived classes inherit attributes and behaviors from base

classes.

 Hierarchy: Establishing a relationship between classes.

2. Inheritance Types:

 Single Inheritance: Derived from a single base class.

 Multiple Inheritance: Derived from multiple base classes.

 Hierarchical Inheritance: Multiple derived classes from a single base class.

3. Base Class Access Control:

 Public, Protected, Private Inheritance: Controlling access to base class

members in derived classes.

4. Runtime Polymorphism using Virtual Functions:

 Dynamic Binding: Resolving function calls at runtime.

 Virtual Functions: Functions declared in base class and overridden in derived

classes.

5. Abstract Classes:

 Pure Virtual Functions: Classes that contain at least one pure virtual function.

 Cannot be Instantiated: Used as a base for other classes.

Streams I/O

1. Input/Output Streams:

 iostream Library: Handling input and output operations in C++.

 cin, cout, cerr: Standard streams for input, output, and error messages.

Algorithms and Performance Analysis

1. Algorithms:

 Generic Methods: A step-by-step procedure for solving computational

problems.

 Standard Template Library (STL): Collection of algorithms and data structures.

2. Performance Analysis:

 Time Complexity: Measure of the amount of time an algorithm takes to run.

 Space Complexity: Measure of the amount of memory an algorithm uses.

Basic Data Structures

1. List ADT:

 Sequential Collection: Collection of elements with linear order.

 Operations: Insertion, deletion, traversal, etc.

2. Stack ADT:

 Last In, First Out (LIFO): Data structure where the last element added is the first

one to be removed.

 Operations: Push, pop, peek, etc.

3. Queue ADT:

 First In, First Out (FIFO): Data structure where the first element added is the first

one to be removed.

 Operations: Enqueue, dequeue, front, rear, etc.

1. Generic Programming: Function and Class Templates

Function Templates:

Function templates allow writing generic functions that work with any data type.

cpp

Copy code

template <class T>

T maxValue(T a, T b) {

return (a > b) ? a : b;}

int maxInt = maxValue(5, 10); // maxInt = 10

float maxFloat = maxValue(5.5f, 10.7f); // maxFloat = 10.7

Class Templates:

Class templates allow defining generic classes.

template <class T>

class Pair {

private:

T first, second;

public:

Pair(T a, T b) : first(a), second(b) {}

T getFirst() { return first; }

T getSecond() { return second; }

};

Pair<int> intPair(5, 10);

int firstValue = intPair.getFirst(); // firstValue = 5

2. Inheritance Basics, Base and Derived Classes

Base and Derived Classes:

Inheritance allows a new class to inherit properties and behavior from an existing class.

class Animal {

public:

void makeSound() {

cout << "Some generic sound\n";

}

};

class Dog : public Animal {

public:

void makeSound() {

cout << "Woof!\n";

}

};

Dog myDog;

myDog.makeSound(); // Output: Woof!

3. Inheritance Types, Base Class Access Control

Inheritance Types:

Public: Public members of the base class become public in the derived class.

Protected: Public and protected members of the base class become protected in the derived class.

Private: Public and protected members of the base class become private in the derived class.

class Base {

public:

int publicVar;

protected:

int protectedVar;

private:

int privateVar;

};

class Derived : public Base {

// Access specifiers control visibility of inherited members

};

4. Runtime Polymorphism using Virtual Functions

Virtual Functions:

Virtual functions enable polymorphic behavior, allowing functions to be overridden in derived

classes.

class Shape {

public:

virtual void draw() {

cout << "Drawing a shape\n";

}

};

class Circle : public Shape {

public:

void draw() override {

cout << "Drawing a circle\n";

}

};

Shape* shapePtr = new Circle();

shapePtr->draw(); // Output: Drawing a circle

5. Abstract Classes

Abstract Classes:

Abstract classes contain at least one pure virtual function and cannot be instantiated.

class AbstractShape {

public:

virtual void draw() = 0; // Pure virtual function

};

class ConcreteShape : public AbstractShape {

public:

void draw() override {

cout << "Drawing a concrete shape\n";

}

};

AbstractShape* abstractPtr = new ConcreteShape();

abstractPtr->draw(); // Output: Drawing a concrete shape

6. Streams I/O

Streams Input/Output:

C++ streams allow reading from and writing to various sources like standard input/output, files,

etc.

#include <iostream>

#include <fstream>

using namespace std;

int main() {

int number;

cout << "Enter a number: ";

cin >> number;

cout << "You entered: " << number << endl;

ofstream file("output.txt");

file << "Writing to a file using C++ streams.\n";

file.close();

return 0;

}

7. Algorithms, Time Complexity, and Space Complexity

Time Complexity and Space Complexity:

Understanding algorithm efficiency in terms of time and space.

// Example of a simple linear search algorithm

int linearSearch(int arr[], int n, int target) {

for (int i = 0; i < n; ++i) {

if (arr[i] == target) {

return i; // Element found

}

}

return -1; // Element not found

}

8. Review of Basic Data Structures

Basic Data Structures:

List ADT: A collection of elements with sequential access.

Stack ADT: Last In, First Out (LIFO) data structure.

Queue ADT: First In, First Out (FIFO) data structure.

// Example of a stack implementation using C++ STL

#include <stack>

int main() {

stack<int> myStack;

myStack.push(5);

myStack.push(10);

int topElement = myStack.top(); // topElement = 10

myStack.pop();

return 0;

}

	Generic Programming
	Inheritance Basics
	Streams I/O
	Algorithms and Performance Analysis
	Basic Data Structures

