
Unit III
Linear list representation, operations insertion, deletion and searching, hash table

representation, hash

functions, collision, resolution-separate chaining, open addressing-linear probing, quadratic

probing,

double hashing.

Priority Queues: Definition, ADT, Realizing a Priority Queue using Heaps, Definition,

insertion,

Deletion, External Sorting-Model for external sorting. Search Trees: Binary Search Trees,

Definition,

ADT, Implementation, Operations-Searching, Insertion and Deletion

Linear List Representation

1. Operations on Linear Lists:

 Insertion: Adding elements at different positions in the list.

 Deletion: Removing elements from different positions.

 Searching: Finding elements within the list.

Hash Table Representation

1. Hash Functions:

 Mapping Keys to Buckets: Techniques to convert keys into indices in a hash

table.

 Uniform Distribution: Aim for even distribution to minimize collisions.

2. Collision Resolution:

 Separate Chaining: Each bucket contains a linked list of elements hashing to the

same index.

 Open Addressing:

 Linear Probing: Checking the next location in case of collision.

 Quadratic Probing: Using a quadratic function to find the next available

slot.

 Double Hashing: Using two hash functions to resolve collisions.

Priority Queues

1. Definition and ADT:

 Abstract Data Type: Allows insertion and deletion based on priority.

 Heaps: Commonly used to implement priority queues, particularly binary heaps.

2. Realizing a Priority Queue using Heaps:

 Heap Structure: Maintaining a binary heap to prioritize elements.

 Operations: Insertion, deletion according to their priority level.

External Sorting

1. Model for External Sorting:

 Handling Large Data Sets: Sorting data that doesn't fit into memory.

 Disk Access Optimization: Minimizing disk I/O operations.

Search Trees

1. Binary Search Trees (BST):

 Ordered Data Structure: Left child < Parent < Right child.

 Operations: Searching, Insertion, Deletion maintaining the BST property.

1. Linear List Representation and Operations

Linear List Representation:

Linear lists represent a sequence of elements where each element has a successor and a predecessor

(except for the first and last elements).

// Example: Linear list representation using arrays

const int MAX_SIZE = 100;

int myList[MAX_SIZE];

int listSize = 0;

Operations: Insertion, Deletion, Searching

Insertion: Adding elements to the list at a specified position.

Deletion: Removing elements from the list at a specified position.

Searching: Finding elements within the list.

// Example: Insertion, Deletion, Searching in a linear list

void insertElement(int value, int position) { /* ... */ }

void deleteElement(int position) { /* ... */ }

int searchElement(int value) { /* ... */ }

2. Hash Table Representation, Hash Functions, Collision, Resolution

Hash Table Representation:

A hash table is a data structure that maps keys to values using a hash function.

// Example: Hash table representation using arrays

const int TABLE_SIZE = 100;

int hashTable[TABLE_SIZE];

Hash Functions and Collision Resolution:

Hash Function: Maps keys to indices in the hash table.

Collision: Occurs when two keys hash to the same index.

Collision Resolution: Methods like separate chaining, linear probing, quadratic probing, and double

hashing resolve collisions.

3. Priority Queues

Definition and ADT:

A priority queue is a data structure where each element has an associated priority.

Realizing a Priority Queue using Heaps:

A heap is a tree-based data structure where the parent node has a higher priority than its children.

// Example: Realizing a Priority Queue using Heaps

#include <queue>

using namespace std;

priority_queue<int> myPriorityQueue;

myPriorityQueue.push(5);

myPriorityQueue.push(10);

int topElement = myPriorityQueue.top(); // topElement = 10

myPriorityQueue.pop();

4. External Sorting

Model for External Sorting:

External sorting involves sorting large datasets that don't fit entirely in memory.

5. Search Trees: Binary Search Trees

Definition and ADT:

A binary search tree (BST) is a tree-based data structure where the left child is smaller and the right child

is greater than the parent.

Operations: Searching, Insertion, and Deletion:

Searching: Finding elements within the tree.

Insertion: Adding elements to the tree while maintaining its properties.

Deletion: Removing elements from the tree while preserving its structure.

// Example: Binary Search Tree operations

struct Node {

int key;

Node* left;

Node* right;

};

Node* search(Node* root, int key) { /* ... */ }

Node* insert(Node* root, int key) { /* ... */ }

Node* deleteNode(Node* root, int key) { /* ... */ }

	Linear List Representation
	Hash Table Representation
	Priority Queues
	External Sorting
	Search Trees

