
Unit IV

AVL Trees, Definition, Heights of an AVL Tree, Operations-Insertion, Deletion and

Searching. B-

Trees of order m, height of a B-Tree, insertion, deletion and searching, Comparison of Search

Trees

Graphs: Basic terminology, representations of graphs, graph search methods DFS, BFS. Text

Processing: Pattern matching algorithms-Brute force, the Boyer Moore algorithm, the

Knuth-Morris-

Pratt algorithm, Rabin Karp algorithm.

AVL Trees

1. Definition:

 Self-Balancing Binary Search Trees: Maintains a balance factor to ensure

logarithmic time complexity for operations.

 Balanced Condition: Heights of the left and right subtrees differ by at most one.

2. Heights of an AVL Tree:

 Balanced Property: Ensuring the tree remains balanced.

 Balancing Operations: Rotations to maintain balance during insertions and

deletions.

3. Operations:

 Insertion: Ensuring the balance factor remains within acceptable limits.

 Deletion: Adjusting the tree while maintaining the balance.

 Searching: Leveraging the tree's balanced nature for efficient searches.

B-Trees

1. Definition of B-Trees of Order m:

 Balanced Tree Structure: A self-balancing tree designed for disk storage and

databases.

 Properties: Nodes can have more than two children, reducing disk access.

2. Height of a B-Tree:

 Optimal Height: Ensuring an efficient tree structure for disk access.

3. Operations:

 Insertion: Maintaining B-Tree properties while accommodating new elements.

 Deletion: Adjusting the tree while maintaining the order and balance.

 Searching: Leveraging B-Tree properties for efficient searches in disk-based

storage.

Comparison of Search Trees

1. Comparative Analysis:

 Efficiency Comparison: Analyzing the performance of various search trees.

 Trade-offs: Considering factors like insertion, deletion, search times, memory

usage, etc.

Graphs

1. Basic Terminology:

 Vertices and Edges: Elements and connections in a graph structure.

 Directed and Undirected Graphs: Presence or absence of direction in edges.

2. Representations of Graphs:

 Adjacency Matrix: Representing connections between vertices.

 Adjacency List: Storing connections as linked lists.

3. Graph Search Methods:

 Depth-First Search (DFS): Traversing graph structures depth-wise.

 Breadth-First Search (BFS): Exploring nodes level by level.

Text Processing

1. Pattern Matching Algorithms:

 Brute Force: Directly comparing a pattern with substrings.

 Boyer Moore Algorithm: Utilizes heuristic to jump in the search space.

 Knuth-Morris-Pratt Algorithm: Utilizes a pattern's own information to avoid

unnecessary comparisons.

 Rabin Karp Algorithm: Utilizes hashing for efficient pattern searching.

1. AVL Trees

Definition and Properties:

AVL Trees are self-balancing binary search trees where the height difference between the left and right

subtrees (balance factor) of any node is at most 1.

Heights of an AVL Tree:

The height of an AVL tree is approximately log base 2 (n), where n is the number of nodes in the tree.

Operations: Insertion, Deletion, Searching

Insertion: Ensures the tree remains balanced by performing rotations to maintain AVL properties.

Deletion: Balances the tree by performing rotations after deletion.

Searching: Follows the standard BST search algorithm.

// Example: AVL Tree operations

class AVLTree {

public:

void insert(int value) { /* ... */ }

void remove(int value) { /* ... */ }

bool search(int value) { /* ... */ }

};

2. B-Trees of Order m

Definition and Properties:

B-Trees are balanced tree structures with a variable number of children per node, designed to work well

with secondary storage.

Height of a B-Tree:

The height of a B-Tree is logarithmic and depends on the number of keys and the order of the tree.

Operations: Insertion, Deletion, Searching

Insertion: Maintains B-Tree properties by redistributing keys and splitting nodes if necessary.

Deletion: Ensures B-Tree properties are preserved by merging nodes or redistributing keys.

Searching: Uses a similar mechanism as in BSTs but traverses multiple levels due to multiple children.

3. Comparison of Search Trees

Comparison Factors:

Comparison of search trees involves analyzing factors like the average case and worst-case time

complexity of operations (searching, insertion, deletion), memory usage, and structural properties.

4. Graphs

Basic Terminology and Representations:

Graphs consist of vertices (nodes) and edges (connections between nodes).

Graph Search Methods: DFS, BFS

DFS (Depth-First Search): Traverses as far as possible along each branch before backtracking.

BFS (Breadth-First Search): Explores all the vertices at the present depth before moving on to the

vertices at the next depth level.

4. Text Processing: Pattern Matching Algorithms

Brute Force, Boyer Moore, Knuth-Morris-Pratt, Rabin-Karp

Brute Force: Compares the pattern to each substring of the text.

Boyer Moore: Skips comparisons based on a "bad character" heuristic.

Knuth-Morris-Pratt: Utilizes a "failure function" to skip unnecessary comparisons.

Rabin-Karp: Uses hashing to compare the pattern with substrings of the text.

	AVL Trees
	B-Trees
	Comparison of Search Trees
	Graphs
	Text Processing

