
 1

Definition of Process

The notion of process is central to the understanding of operating systems. There are

quite a few definitions presented in the literature, but no "perfect" definition has yet

appeared.

Definition

The term "process" was first used by the designers of the MULTICS in 1960's. Since

then, the term process, used somewhat interchangeably with 'task' or 'job'. The process

has been given many definitions for instance

• A program in Execution.

• An asynchronous activity.

• The 'animated sprit' of a procedure in execution.

• The entity to which processors are assigned.

• The 'dispatchable' unit.

and many more definitions have given. As we can see from above that there is no

universally agreed upon definition, but the definition "Program in Execution" seem to

be most frequently used. And this is a concept are will use in the present study of

operating systems.

Now that we agreed upon the definition of process, the question is what is the relation

between process and program. It is same beast with different name or when this beast is

sleeping (not executing) it is called program and when it is executing becomes process.

Well, to be very precise. Process is not the same as program. In the following discussion

we point out some of the difference between process and program. As we have

mentioned earlier.

Process is not the same as program. A process is more than a program code. A process is

an 'active' entity as oppose to program which consider to be a 'passive' entity. As we all

know that a program is an algorithm expressed in some suitable notation, (e.g.,

programming language). Being a passive, a program is only a part of process. Process, on

the other hand, includes:

• Current value of Program Counter (PC)

• Contents of the processors registers

• Value of the variables

• The process stack (SP) which typically contains temporary data such as

subroutine parameter, return address, and temporary variables.

• A data section that contains global variables.

A process is the unit of work in a system.

In Process model, all software on the computer is organized into a number of sequential

processes. A process includes PC, registers, and variables. Conceptually, each process

has its own virtual CPU. In reality, the CPU switches back and forth among processes.

(The rapid switching back and forth is called multiprogramming).

Process State

 2

The process state consist of everything necessary to resume the process execution if it is

somehow put aside temporarily. The process state consists of at least following:

• Code for the program.

• Program's static data.

• Program's dynamic data.

• Program's procedure call stack.

• Contents of general purpose registers.

• Contents of program counter (PC)

• Contents of program status word (PSW).

• Operating Systems resource in use.

A process goes through a series of discrete process states.

• New State: The process being created.

• Running State: A process is said to be running if it has the CPU, that is, process

actually using the CPU at that particular instant.

• Blocked (or waiting) State: A process is said to be blocked if it is waiting for

some event to happen such that as an I/O completion before it can proceed. Note

that a process is unable to run until some external event happens.

• Ready State: A process is said to be ready if it use a CPU if one were available.

A ready state process is runable but temporarily stopped running to let another

process run.

• Terminated state: The process has finished execution.

Process Operations

1. Process Creation

In general-purpose systems, some way is needed to create processes as needed during

operation. There are four principal events led to processes creation.

• System initialization.

• Execution of a process Creation System calls by a running process.

• A user request to create a new process.

• Initialization of a batch job.

Foreground processes interact with users. Background processes that stay in background

sleeping but suddenly springing to life to handle activity such as email, webpage,

 3

printing, and so on. Background processes are called daemons. This call creates an exact

clone of the calling process.

A process may create a new process by some create process such as 'fork'. It choose to

does so, creating process is called parent process and the created one is called the child

processes. Only one parent is needed to create a child process. Note that unlike plants and

animals that use sexual representation, a process has only one parent. This creation of

process (processes) yields a hierarchical structure of processes like one in the figure.

Notice that each child has only one parent but each parent may have many children. After

the fork, the two processes, the parent and the child, have the same memory image, the

same environment strings and the same open files. After a process is created, both the

parent and child have their own distinct address space. If either process changes a word in

its address space, the change is not visible to the other process.

 Following are some reasons for creation of a process

• User logs on.

• User starts a program.

• Operating systems creates process to provide service, e.g., to manage printer.

• Some program starts another process, e.g., Netscape calls xv to display a picture.

2. Process Termination

A process terminates when it finishes executing its last statement. Its resources are

returned to the system, it is purged from any system lists or tables, and its process control

block (PCB) is erased i.e., the PCB's memory space is returned to a free memory pool.

The new process terminates the existing process, usually due to following reasons:

• Normal Exist Most processes terminates because they have done their job. This

call is exist in UNIX.

• Error Exist When process discovers a fatal error. For example, a user tries to

compile a program that does not exist.

• Fatal Error An error caused by process due to a bug in program for example,

executing an illegal instruction, referring non-existing memory or dividing by

zero.

• Killed by another Process A process executes a system call telling the

Operating Systems to terminate some other process. In UNIX, this call is kill. In

some systems when a process kills all processes it created are killed as well

(UNIX does not work this way).

3. Process States

A process goes through a series of discrete process states.

• New State The process being created.

• Terminated State The process has finished execution.

• Blocked (waiting) State When a process blocks, it does so because logically it

cannot continue, typically because it is waiting for input that is not yet available.

Formally, a process is said to be blocked if it is waiting for some event to happen

(such as an I/O completion) before it can proceed. In this state a process is unable

to run until some external event happens.

• Running State A process is said t be running if it currently has the CPU, that is,

actually using the CPU at that particular instant.

• Ready State A process is said to be ready if it use a CPU if one were available.

It is runable but temporarily stopped to let another process run.

Logically, the 'Running' and 'Ready' states are similar. In both cases the process is willing

to run, only in the case of 'Ready' state, there is temporarily no CPU available for it. The

 4

'Blocked' state is different from the 'Running' and 'Ready' states in that the process cannot

run, even if the CPU is available.

Process State Transitions:

Following are six(6) possible transitions among above mentioned five (5) states

FIGURE

• Transition 1 (F) occurs when process discovers that it cannot continue. If

running process initiates an I/O operation before its allotted time expires, the

running process voluntarily relinquishes the CPU.

This state transition is:

 Block (process-name): Running → Block.

• Transition 2 (C) occurs when the scheduler decides that the running process has

run long enough and it is time to let another process have CPU time.

This state transition is:

Time-Run-Out (process-name): Running → Ready.

• Transition 3 (B) occurs when all other processes have had their share and it is

time for the first process to run again

This state transition is:

 Dispatch (process-name): Ready → Running.

• Transition 4 (E) occurs when the external event for which a process was waiting

(such as arrival of input) happens.

This state transition is:

 Wakeup (process-name): Blocked → Ready.

• Transition 5 (A)occurs when the process is created.

This state transition is:

 Admitted (process-name): New → Ready.

• Transition 6 (D) occurs when the process has finished execution.

This state transition is:

 Exit (process-name): Running → Terminated.

 5

Process Control Block

A process in an operating system is represented by a data structure known as a process

control block (PCB) or process descriptor. The PCB contains important information

about the specific process including

• The current state of the process i.e., whether it is ready, running, waiting, or

whatever.

• Unique identification of the process in order to track "which is which"

information.

• A pointer to parent process.

• Similarly, a pointer to child process (if it exists).

• The priority of process (a part of CPU scheduling information).

• Pointers to locate memory of processes.

• A register save area.

• The processor it is running on.

The PCB is a certain store that allows the operating systems to locate key information

about a process. Thus, the PCB is the data structure that defines a process to the operating

systems.

CPU/Process Scheduling

The assignment of physical processors to processes allows processors

to accomplish work. The problem of determining when processors

should be assigned and to which processes is called processor

scheduling or CPU scheduling.

When more than one process is runnable, the operating system must

decide which one first. The part of the operating system
concerned with this decision is called the scheduler, and

algorithm it uses is called the scheduling algorithm.

Objectives of Scheduling/ Scheduling Policies:

In this section we try to answer following question: What the scheduler

try to achieve?

 The criteria that the schedulers generally use in attempting to

optimize the system performance are:

1. To maximize CPU Utilization:
 Scheduler should keep the system (or in particular CPU) busy

cent percent of the time when possible. The CPU utilization is the

average function of the clock time the CPU is busy executing user

programs and the operating system functions.

2. Minimize Response Time :

 A scheduler should minimize the response time for interactive
user. Response time is important in time sharing and Real time

operating system. It is defined as the time elapses from the moment

 6

the last character of the command or transaction is entered until the

first result or response appears on the terminal.

3. Minimizes Turnaround Time:

 A scheduler should minimize the time batch users must wait for
an output. Turnaround time is the time difference between job

submission and job completion.

4. Maximize Throughput:

 A scheduler should maximize the number of jobs processed per

unit time.

5. Minimize Waiting Time:

 Waiting time is essentially the time that a job spends waiting for
resource allocation. It is the difference between the turnaround time

and actual execution time of the job.

A little thought will show that some of these goals are contradictory. It
can be shown that any scheduling algorithm that favors some class of

jobs hurts another class of jobs. The amount of CPU time available is
finite, after all.

Preemptive Vs Nonpreemptive Scheduling:

The Scheduling algorithms can be divided into two categories with

respect to how they deal with clock interrupts.

Non-preemptive Scheduling:

 A scheduling discipline is non-preemptive if, once a process

has been given the CPU, the CPU cannot be taken away from that

process until it gets complete or goes in waiting state.

Following are some characteristics of non-preemptive scheduling

1. In non-preemptive system, short jobs are made to wait by
longer jobs but the overall treatment of all processes is fair.

2. In non-preemptive system, response times are more predictable

because incoming high priority jobs can not displace waiting
jobs.

3. In non-preemptive scheduling, a scheduler executes jobs in the
following two situations.

a. When a process switches from running state to the waiting
state.

b. When a process terminates.

Preemptive Scheduling

A scheduling discipline is preemptive if, once a process has been given

the CPU can be taken away.

The strategy of allowing processes that are logically runnable to be
temporarily suspended is called Preemptive Scheduling and it is

contrast to the "run to completion" method.

 7

Scheduling Algorithms

CPU Scheduling deals with the problem of deciding which of the

processes in the ready queue is to be allocated the CPU.

Following are some scheduling algorithms we will study

1. FCFS Scheduling.
2. Round Robin Scheduling.

3. SJF Scheduling.
4. SRT Scheduling.

5. Priority Scheduling.
6. Multilevel Queue Scheduling.

7. Multilevel Feedback Queue Scheduling.

1. First-Come-First-Served (FCFS) Scheduling

Other names of this algorithm are:

• First-In-First-Out (FIFO)

• Run-to-Completion

• Run-Until-Done

Perhaps, First-Come-First-Served algorithm is the simplest scheduling
algorithm. Processes are dispatched according to their arrival time on

the ready queue. Being a non-preemptive discipline, once a process
has a CPU, it runs to completion. The FCFS scheduling is fair in the

formal sense or human sense of fairness but it is unfair in the sense
that long jobs make short jobs wait and unimportant jobs make

important jobs wait.

FCFS is more predictable than most of other schemes since it offers

time. FCFS scheme is not useful in scheduling interactive users
because it cannot guarantee good response time. The code for FCFS

scheduling is simple to write and understand. One of the major

drawback of this scheme is that the average time is often quite long.

The First-Come-First-Served algorithm is rarely used as a master

scheme in modern operating systems but it is often embedded within

other schemes.

2. Round Robin Scheduling

One of the oldest, simplest, fairest and most widely used algorithm is

round robin (RR).

In the round robin scheduling, processes are dispatched in a FIFO
manner but are given a limited amount of CPU time called a time-

slice or a quantum.

If a process does not complete before its CPU-time expires, the CPU is
preempted and given to the next process waiting in a queue. The

preempted process is then placed at the back of the ready list.

Round Robin Scheduling is preemptive (at the end of time-slice)

therefore it is effective in time-sharing environments in which the
system needs to guarantee reasonable response times for interactive

users.

 8

The only interesting issue with round robin scheme is the length of the
quantum. Setting the quantum too short causes too many context

switches and lower the CPU efficiency. On the other hand, setting the
quantum too long may cause poor response time and approximates

FCFS.

In any event, the average waiting time under round robin scheduling is

often quite long.

3. Shortest-Job-First (SJF) Scheduling

Other name of this algorithm is Shortest-Process-Next (SPN).

Shortest-Job-First (SJF) is a non-preemptive discipline in which waiting
job (or process) with the smallest estimated run-time-to-completion is

run next. In other words, when CPU is available, it is assigned to the

process that has smallest next CPU burst.

The SJF scheduling is especially appropriate for batch jobs for which
the run times are known in advance. Since the SJF scheduling

algorithm gives the minimum average time for a given set of

processes, it is probably optimal.

The SJF algorithm favors short jobs (or processors) at the expense of

longer ones.

The obvious problem with SJF scheme is that it requires precise

knowledge of how long a job or process will run, and this information

is not usually available.

The best SJF algorithm can do is to rely on user estimates of run

times.

In the production environment where the same jobs run

regularly, it may be possible to provide reasonable estimate of
run time, based on the past performance of the process. But in

the development environment users rarely know how their

program will execute.

Like FCFS, SJF is non preemptive therefore, it is not useful in
timesharing environment in which reasonable response time must be

guaranteed.

4. Shortest-Remaining-Time (SRT) Scheduling

• The SRT is the preemtive counterpart of SJF and useful in time-
sharing environment.

• In SRT scheduling, the process with the smallest estimated run-
time to completion is run next, including new arrivals.

• In SJF scheme, once a job begin executing, it run to completion.
• In SJF scheme, a running process may be preempted by a new

arrival process with shortest estimated run-time.
• The algorithm SRT has higher overhead than its counterpart SJF.

• The SRT must keep track of the elapsed time of the running
process and must handle occasional preemptions.

 9

• In this scheme, arrival of small processes will run almost
immediately. However, longer jobs have even longer mean

waiting time.

5. Priority Scheduling

The basic idea is straightforward: each process is assigned a priority,

and priority is allowed to run. Equal-Priority processes are scheduled in
FCFS order. The shortest-Job-First (SJF) algorithm is a special case of

general priority scheduling algorithm.

An SJF algorithm is simply a priority algorithm where the priority is the
inverse of the (predicted) next CPU burst. That is, the longer the CPU

burst, the lower the priority and vice versa.

Priority can be defined either internally or externally. Internally defined

priorities use some measurable quantities or qualities to compute

priority of a process.

Examples of Internal priorities are

• Time limits.
• Memory requirements.

• File requirements,
 for example, number of open files.

• CPU Vs I/O requirements.

Externally defined priorities are set by criteria that are external to

operating system such as

• The importance of process.
• Type or amount of funds being paid for computer use.

• The department sponsoring the work.

• Politics.

Priority scheduling can be either preemptive or non preemptive

• A preemptive priority algorithm will preemptive the CPU if the
priority of the newly arrival process is higher than the priority of

the currently running process.
• A non-preemptive priority algorithm will simply put the new

process at the head of the ready queue.

A major problem with priority scheduling is indefinite blocking or
starvation. A solution to the problem of indefinite blockage of the low-

priority process is aging. Aging is a technique of gradually increasing

the priority of processes that wait in the system for a long period of

time.

6.Multilevel Queue Scheduling

A multilevel queue scheduling algorithm partitions the ready queue in

several separate queues. In a multilevel queue scheduling processes

are permanently assigned to one queues.

 10

The processes are permanently assigned to one another, based on

some property of the process, such as

• Memory size

• Process priority

• Process type

Algorithm choose the process from the occupied queue that has the

highest priority, and run that process either

• Preemptive or

• Non-preemptively

Each queue has its own scheduling algorithm or policy.

 Possibility I

 If each queue has absolute priority over lower-priority queues then
no process in the queue could run unless the queue for the highest-

priority processes were all empty.

For example, in the above figure no process in the batch queue could

run unless the queues for system processes, interactive processes, and

interactive editing processes will all empty.

 Possibility II

 If there is a time slice between the queues then each queue gets a
certain amount of CPU times, which it can then schedule among the

processes in its queue. For instance;

• 80% of the CPU time to foreground queue using RR.

• 20% of the CPU time to background queue using FCFS.

Since processes do not move between queue so, this policy has the

advantage of low scheduling overhead, but it is inflexible.

7.Multilevel Feedback Queue Scheduling

Multilevel feedback queue-scheduling algorithm allows a process to

move between queues. It uses many ready queues and associate a

different priority with each queue.

The Algorithm chooses to process with highest priority from the
occupied queue and run that process either preemptively or

unpreemptively. If the process uses too much CPU time it will moved
to a lower-priority queue. Similarly, a process that wait too long in the

lower-priority queue may be moved to a higher-priority queue may be
moved to a highest-priority queue. Note that this form of aging

prevents starvation.

• A process entering the ready queue is placed in queue 0.

• If it does not finish within 8 milliseconds time, it is moved to the
tail of queue 1.

• If it does not complete, it is preempted and placed into queue 2
• Processes in queue 2 run on a FCFS basis, only when queue 2

run on a FCFS basis, only when queue 0 and queue 1 are empty.

 11

Multiprocessor Scheduling:

 In multiprocessor system there are many processors. Here

multiple CPUs are available, so scheduling problem is more complex.
here we assume that the processors are identical in terms of their

functionality; any available processor can then be run any process in
the queue. We also assume UMA(Uniform Memory Access).

 If several identical processors are available, then load sharing
occurs. It could be possible to provide a separate queue for each

processor. In this case if an empty queue is there then that processor
will be idle while the other processors be busy. To prevent this

situation a common ready queue is provided to processors where
processes are scheduled to any available processor.

 In such a scheme any one of the two scheduling approaches may

be used. In one approach, each processor is self scheduled selecting a
process from the common queue and executes it. As here, multiple

processor are present there is possibility that more than one processor
trying to access and update common data structure. To avoid this we

must ensure that two processors do not choose the same process, and
that the processes are not lost from the queue.

 The another approach avoid this problem by appointing one
processor as scheduler for the other processors, thus creating a

master-slave structure.
 In some systems all the scheduling activities are handled by the

scheduler- the master server. The other processors only executes the
user code. This asymmetric multiprocessing is simpler than symmetric

multiprocessing as one processor access the system data structures,
alleviating (making easy) the need for data sharing. Typically,

asymmetric multiprocessing is implemented first within an operating

system and is then upgraded to symmetric multiprocessing as the
system evolves.

