Conformational Analysis

Cyclohexane Conformations Alkane conformations

Views of Ethane

The Newman Projection

Rotational Conformations of Ethane

Definitions

- Conformations Different spatial arrangments that a molecule can adopt due to rotation about sigma bonds.
- Staggered A low energy conformation where the bonds on adjacent atoms bisect each other (60° dihedral angle), maximizing the separation.
- Eclipsed A high energy conformation where the bonds on adjacent atoms are aligned with each other (0° dihedral angle).

Definitions

- Anti Description given to two substitutents attached to adjacent atoms when their bonds are at 180° with respect to each other.
- Syn Description given to two substitutents attached to adjacent atoms when their bonds are at 0° with respect to each other.
- Gauche Description given to two substitutents attached to adjacent atoms when their bonds are at 60° with respect to each other.

60° Rotation Causes Torsional or Eclipsing Strain

Types of Strain

- Steric Destabilization due to the repulsion between the electron clouds of atoms or groups. Groups try to occupy some common space.
- Torsional Destabilization due to the repulsion between pairs of bonds caused by the electrostatic repulsion of the electrons in the bonds. Groups are eclipsed.
- Angle Destabilisation due to distortion of a bond angle from it's optimum value caused by the electrostatic repulsion of the electrons in the bonds. e.g. cyclopropane

© 2004 Thomson/Brooks Cole

Butane Conformations (C₂-C₃)

Gauche Interaction in Butane

© 2004 Thomson/Brooks Cole

Strain Energy can be Quantified

TABLE 4.1 Energy Costs for Interactions in Alkane Conformers

		Energy cost	
Interaction	Cause	(kJ/mol)	(kcal/mol)
$\mathbf{H} \leftrightarrow \mathbf{H} \text{ eclipsed}$	Torsional strain	4.0	1.0
$H \leftrightarrow CH_3 \text{ eclipsed}$	Mostly torsional strain	6.0	1.4
$\mathrm{CH}_3 \leftrightarrow \mathrm{CH}_3 \operatorname{eclipsed}$	Torsional plus steric strain	11	2.6
$\mathrm{CH}_3 \iff \mathrm{CH}_3$ gauche	Steric strain	3.8	0.9

©2004 Thomson - Brooks/Cole

Butane has Steric and Torsional Strain When Eclipsed

Totally eclipsed conformation of butane

PE Diagram for Butane (link)

1-Chloropropane

Most stable (staggered)

©2004 Thomson - Brooks/Cole

Least stable (eclipsed)

Saturated Cyclic Compounds

Cyclopropane Angle and Torsional Strain

nonlinear overlap

Electron Density Map

@ 2004 Thomson/Brooks Cole

3n $(CH_2)_n$ $\rightarrow n \operatorname{CO}_2 + n \operatorname{H}_2\operatorname{O} + \operatorname{Heat}$ O_2 ©2004 Thomson - Brooks/Cole

© 2004 Thomson/Brooks Cole

All Dihedral Angles = 0°

Cyclobutane is not Planar

Cyclopentane

Newman projection showing relief of eclipsing of bonds

Cyclohexane

© 2004 Thomson/Brooks Cole

Chair Conformation

chair conformation

viewed along the "seat" bonds

Boat Conformation

boat conformation

symmetrical boat

Newman projection

"twist" boat

adding "wedges" helps show the 3D structure

The chair can be obtained by drawing opposite sides as 3 sets of parallel lines

angled

horizontal

© 2004 Thomson/Brooks Cole

Axial bonds and Equatorial bonds

Axial bonds: The six axial bonds, one on each carbon, are parallel and alternate up-down.

Equatorial bonds: The six equatorial bonds, one on each carbon, come in three sets of two parallel lines. Each set is also parallel to two ring bonds. Equatorial bonds alternate between sides around the ring.

Completed cyclohexane

© 2004 Thomson/Brooks Cole

Rings can Flip from one Chair Conformation to Another

Flipping Chair Conformations

- All axial bonds become equatorial
- All equatorial bonds become axial
- All "up" bonds stay up
- All "down" bonds stay down

Axial-up becomes Equatorial-up

Axial bromocyclohexane

Equatorial bromocyclohexane

©2004 Thomson - Brooks/Cole

Equatorial Conformation is Preferred (link)

© 2004 Thomson/Brooks Cole

Axial Methyl group is Gauche to C_3 in the ring

Equatorial Methyl Group is Anti to C_3 in the ring

γ	Strain o 1,3-diaxia (kJ/mol)	of one H–Y l interaction (kcal/mol)	$H \longleftrightarrow Y$
$\begin{array}{c}F \\Cl \\Br \\OH \\CH_3 \\CH_2CH_3 \\CH(CH_3)_2 \\C(CH_3)_3 \\C_6H_5 \\C$	$\begin{array}{c} 0.5 \\ 1.0 \\ 1.0 \\ 2.1 \\ 3.8 \\ 4.0 \\ 4.6 \\ 11.4 \\ 6.3 \\ 0.0 \end{array}$	$\begin{array}{c} 0.12 \\ 0.25 \\ 0.25 \\ 0.5 \\ 0.9 \\ 0.95 \\ 1.1 \\ 2.7 \\ 1.5 \\ 0.7 \end{array}$	
-CN	0.4	0.1	

TABLE 4.2 Steric Strain in Monosubstituted Cyclohexanes

©2004 Thomson - Brooks/Cole

cis 1,3-Dimethylcyclohexane

diaxial—very unfavorable

diequatorial-much more stable

trans 1,3-Dimethylcyclohexane

Chair conformations of trans-1,3-dimethylcyclohexane

cis-1,2-Dimethylcyclohexane

trans-1,2-Dimethylcyclohexane

One gauche interaction (3.8 kJ/mol)

2

Four CH₃-H diaxial interactions (15.2 kJ/mol)

©2004 Thomson - Brooks/Cole

cis 1-Chloro-4-t-butylcyclohexane

$2 \times 1.0 = 2.0$ kJ/mol steric strain

©2004 Thomson - Brooks/Cole

 $2 \times 11.4 = 22.8$ kJ/mol steric strain

cis-Decalin

trans-Decalin

© 2004 Thomson/Brooks Cole